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1. Introduction. Let M be a connected n-dimensional (n > 3) Riemannian
manifold with not necessarily definite metric g. In this paper we consider
generalized curvature tensors B satisfying on M the condition

(1) ¥ w(X)B(Y, Z2) =0,

X\Y.Z
where w is a 1-form, ¥ denotes the cyclic sum and X, Y, Z e (M), (M) being
the Lie algebra of vector fields on M. In Theorem 1 we prove that if
a generalized curvature tensor B and a 1-form w fulfil condition (1), then at
-every point of M at which w # 0 the equality

() B-B = Q(Ric(B), B)

holds. Further results of this paper are concerned with generalized curvature
tensors fulfilling (1) on a Riemannian manifold admitting 1-form v such that

3) B-v=hQ(g, v),

h being a function on M. In Theorem 2 we prove, among others, that if an
analytic manifold M admits a non-zero generalized curvature tensor B and
non-zero 1-forms w and v satisfying (1) and (3) (with a non-zero function h),
respectively, then the relations

C(B)=0 and B-B=h0(@, B)

hold on M. From this theorem it follows (see Theorem 3) that if M is an
analytic Riemannian manifold of dimension >4 and admitting a certain
concircular vector field and the curvature tensor R satisfies (1) with a non-zero
1-form w, then M is a conformally flat pseudo-symmetric manifold. At the end
of this paper we give examples illustrating our theorems.

Throughout this paper all manifolds are assumed to be connected
Hausdorff manifolds of class C*. Whenever analyticity is supposed, it concerns
all objects involved.

We thank our friends for their help during the preparation of this paper.
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2. Preliminaries. Let M be a Riemannian manifold. We denote by ¥, R, R,
S, C and K the Levi-Civita connection, the curvature tensor, the Rie-
mann—Christoffel curvature tensor, the Ricci tensor, the Weyl conformal
curvature tensor and the scalar curvature of M, respectively.

A tensor field B of type (1, 3) on M is said to be a generalized curvature
tensor [12] if

¥ BX,,X,))X,=0, BX,, X,)+B(X,,X,)=0

X1,X2,X3

and
B(X,, X,, X5, X,)=B(X,, X,, X,, X,),
where
B(X,, X,, X3, X,)=9g(B(X,, X;)X5,X,) and X,,..., X,eZ(M).
The Ricci tensor Ric(B) of B is the trace of the linear mapping
X,-»BX,, X,)X,.

The tensor fields X A Y, R?c’:(ﬁ) and Ric?(B) are defined by the following
relations:

X AYNZ=ygyX 2)X—9g(X, 2)Y,
Ric(B)(X, Y) = g(Ric(B)X, Y),
Ric? (B)(X, Y) = g(Ric(B) X, Ric(B) Y);

respectivelz, where X, Y, Ze Z(M). Further, we define the Weyl curvature
tensor C(B) associated with B by the formula

CB)(X, Y) = BX, Y)———(Ric(B)X A Y+X A Ric(B)Y)

n—2
K(B)
AT Y-

As a generalization of the definition of the tensor X A Y we define for a tensor
A of type (0, 2) the tensor X A ,Y by

X A, Y)Z =AY, Z)X-AX, 2)Y.

For a tensor field T of type (0, p), p = 1, we define the tensor fields B- T and
Q(A, T) by the formulas

(B-N(X,,...X,; X, Y)
= -TBX, X,,X,, ... X)—... = T(X,, ..., X,—1, B(X, V) X,)

XAY

and
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Q(A9 T)(Xla vy Xp; Xa Y)
=T(X A NX, Xgo ooy X))+ v T(X g, ooy Xpmy, (X A, VX)),

respectively, where X,, ..., X, X, YeZ(M).

A 1-form w on a Riemannian manifold M is said to have property (P) (cf.
[7]) if the relation
@ R-v=20(g, w)

holds at every point x € M, v being a suitably chosen 1-form at x. A vector field
V on a manifold M is said to be concircular [16] if the equation

5 VV=f1d

holds on M, where fis a function and Id is the identity transformation on M. It
is clear that if a manifold M admits a vector field V satisfying (5), then the
1-form w = —df satisfies (4) with v given by v(X)=g(V, X), XeZ (M).
Moreover, if df # 0 at a point xe M, then at x we have v # 0, —df = v with
teR—{0} and

(6) R-v =10Q(g, v).

We see that condition (6) is just (3) with B=R.

A manifold M is said to be pseudo-symmetric (see [5]) if at every point of
M the tensors R-R and Q(g, R) are linearly dependent. Recently, pseudo-
symmetric manifolds have been studied by many authors (for references see

[4]).
Some results on generalized curvature tensors on Riemannian manifolds
admitting concircular vector fields are given in [5]-[7].

3. Auxiliary lemmas.

LeMMA 1. Let B be a generalized curvature tensor field on a Riemannian
manifold M. If the conditions

) B-B = aQ(Ric(B), B), B-v=10(g, V)

hold at xe M, where aeR, 0 # ve T*M and teR—{0}, then C(B)=0.
Proof. (i) Suppose that a = 0. Transvecting the equality

(B" B)rsuww = 0
with V" = g"v, and using (7) we obtain
(8) Ayosiu = Avwstus

where

vastu = vw(Bvstu - TGvstu)s Gvstu = Gou9st — Govt Gsu>
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and (B" B)sguows V,» B,su and gy are local components of B-B, v, B and g,
respectively, and r, s, t, 4, v, we{l, 2, ..., n}. But (8) and the equality

Aoy = — Avwsorus
in view of Lemma 1 in [3], give A,,x = 0. Thus
B,y = tGpszu

and, consequently, C(B) = 0.
(ii)) Now, let a # 0. The equality

9 (B* B)rsuuww = 2Q(Ric(B), B)raruows
by transvection with V" and making use of (7), gives
(10) ((n - 1) a— 1),(0“, Bvstu =0, Bw.nu) + T.'(Uw Gv.ml =, Gwm)

+ a(zws(vu Gou—1, gvu) + Zm(vu gsv— 0, gsu)
+‘Zwu(vu I — 0, gsu)- sz(vu Gwe— U, gwu)
- Zw(vu Gsw—V,, gn)_zw(vw Ia—, gsw)) = Oa

where Q(Ric(B), B)gusw and Z,, are local components of Q(Ric(B), B) and
Ric(B), respectively. This, by contraction with g and application of (7), turns
into

(11) (@=1)(04(Zuo— (1= 1) tgu) = 0, (Zuw— (1 — 1) Tg)) = 0,
whence we obtain easily

(12) (x— 1)(:—'15(1?)1)) =0

and

(13) (a— 1)(zu.,—5fl—§)g,.,—ﬂv,v.,) =0.

Further, transvecting (9) with V™ and using (7) we get
(14)  ((n—1)a—1)(v, Bysty + V5 Bryry + 0, Brapu + 0, Brar)
+7(0, Gosru + V5 Gy + Uy Grspu + U, Grry)
+0,(Gus Zot = G1s Zow) + V5 (Ger Zow— Gur Z )
+0,nZos—9is Zo) + 0, Zor — Gur Z0s) = 0,
whence, by contraction*with g, we find
(o= 1) (v, Zis— 0, Z,5) +((n— 1) 1— 2K (B)) (v, gt —V,9s) = O
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or, interchanging the indices,
(15) (na - l)(vw ZW -, Zuw) + ((n - 1) T— GK(ﬁ)) (vw Gu—0, guw) =0.
Now, comparing (15) and (11) and applying the assumption a # 0, we obtain

K(B)
vwzw—vuzw+(t"" ni;)) (vwguv"'vuguw) = 0:
whence
K(B
(19 Zu = (nfl’—r) Gur 10,0,

Furthermore, by (16), equation (14) turns into

U, Dysty + Vg Dpygy + U, Dyps + 0, Dyyps = 0,
whence, in view of Lemma 3 in [15], we obtain
17 Dy =0,

where

D.g, = ((n —1a— 1) B+ (Zt - f_(_ﬁ;) a) Grsu

- a)’(vu UrG1s + Vi 0sGur— U Up Gus— Uy, Uy gm)

It is easy to verify, by standard calculations, that if o # 1/(n—1), then from (17)
it follows that C(B) =0.
Suppose now that a =1/(n—1). Applying this in (12) we get

KB
n(n—1)

Equality (17), together with the last two equalities and the condition a # 0,
yields

(18)

n—-2 _
n(n— l)K(E) G"i“ = y(vu v'g”+v‘ Vs Gur — Uy Up Gus — Vs vugrt)’
whence, by contraction with g* and g™, we find
(19) (n—2)K(B) = 2(n—1)yV*v,.

Moreover, substituting (18) into (16), we obtain
1
Zur = ; K(B) Gur +'yv,,v,,
whence, by contraction with g*, we get yV*v, = 0. But this, together with (19),

gives K (B) = 0, which, by (18), yields 7 = 0,a contradiction. Our lemma is thus
proved.
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LEMMA 2. Let B be a generalized curvature tensor on a Riemannian manifold
M. If C(B) = 0 at a point xe M, then at this point the followmg three identities
are equivalent to each other:

B-B =0(9, B),
B-Ric(B) = 0Q(g, Ric(B)),
K(B) K(B) I U AP
( (n D(n _2‘)>(R (B)——n— )—n_z(Rlcz(B) ntr(Rlcz(B))g),
where g€R.

To prove this lemma we can use the method of the proof of Lemma 1.2 in
[2].

LEMMA 3. Let B be a generalized curvature tensor on a Riemannian manifold
M. If the conditions C(B) =0 and (7) hold at a point xe M, then at x the

equalities
1 [(K(B)
_n_——Z(n—l )G

u
S (0 0 G+ 0,0, 9= 0,0, Gsu— V5 0uGr), T HER,

(20) B

Q(Ric(B)—1g, B)=0, B-B=10Q(g, B)

are satisfied.
Proof. Let Z,, be local components of Ric(B). Transvecting the equality
K (B)

(n_ 1)("—2) rstu = 0

1
(21) Brstu _m (gru Zst ~Gn Zsu +gst Zru —9Gsu Zrl) +

with V" = g™v, and using (7) we obtain

K(B
v, Zts_vt Zy= ( il)—‘t) (vugts-vx gus)a
which gives .
K
@2 Z,= (%l’—r) G0,

Substituting (22) into (21) we get (20). The second equation of our assertion is
a consequence of (20) and (22). Further, in view of (22), we can verify that the
equality
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K(B : K(B | B AT U
(i) (R0 - 15RO wtmcdns)

holds at x. But this, in view of Lemma 2, completes the proof.

4. Main results.

THEOREM 1. Let B be a generalized curvature tensor on a Riemannian
manifold M such that condition (1) is satisfied for B and a 1-form w. If w # 0 at
a point xe M, then the relation

B-B = Q(Ric(B), B)

holds at x.
Proof. Since w is non-zero at x, condition (1) yields

B(X,, X,, X5, X)) =wX)wX)AX,, X3)—w(X,)w(X,)AX,, X,)
+w(X,)w(X3)A(X, X)—w(X)w(X,)AX,, X,),

where A is a symmetric tensor of type (0, 2). Applying now the above equality
in the definitions of the tensors B-B and Q(Ric(B), B), after straightforward
calculations we obtain our assertion.

From the above theorem we obtain immediately:

COROLLARY 1. Let M be a Riemannian manifold such that the curvature
tensor R (resp., the Weyl conformal curvature tensor C) satisfies condition (1) for
a l-form w. If w# 0 at a point xe M, then the relation

R-R=0Q(S,R) (resp, C-C=0)
holds at x, where
g(é(xl’ X,) X;, X4) = C(X,, X,, X;, X,).

THEOREM 2. Let B be a generalized curvature tensor on a Riemannian
manifold M such that condition (1) is satisfied for B and a 1-form w. Moreover, let
the condition B-v = hQ(g, v) be satisfied on M, where h is a function on M. If at
a point xe M the 1-forms w and v and the function h are non-zero, then the
relations

(23) CB)=0,
(24) B-B = hQ(g, B),
(25) Q(Ric(B)—hg, B) =0

hold on some neighbourhood U of x. Moreover, if M is an analytic manifold, then
relations (23)+25) hold on M.
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Proof. Let U be a neighbourhood of x such that v and w and h are
non-zero at every point ye U. Thus, in view of Theorem 1, equation (2) holds
on U. Furthermore, from Lemma 1 it follows that C(B) = 0. Now, Lemma 3
completes the proof.

From the above theorem we get

THEOREM 3. Let M, dimM > 4, be an analytic Riemannian manifold such
that the curvature tensor R and a non-zero l-form w satisfy condition (1).
Moreover, let M admit a non-zero concircular vector field V (see (5)) with
a non-constant function f. Then M is a conformally flat pseudo-symmetric
manifold satisfying the equality

Q(S_hg’ R) =0,
where h is a function on M defined by
—df=hv and v(X)=g(V, X), XeZ(M).

5, Examples. In this section we give two examples of manifolds satisfying
condition (1). The second one is a conformally flat pseudo-symmetric manifold
admitting a concircular vector field.

EXAMPLE 1. Define the metric g on M = R", n > 4, by the formula
grsdx" dx* = A(dx")? + kop dx* dxF +2dx" dx",

where [k,5] is a symmetric and non-singular matrix consisting of constants,
A is a function independent of x", and «, B, y, d€{2,3,...,n—1}. The
only components of R and C not identically zero are those related to
(see [14])

Rlaﬂl = %A.aﬂ
and

1

Cxapl = %A.aﬂ —m k

aﬂkw A.yda

where the dot denotes partial differentiation. Now, it is easy to verify that the
tensors R and C and the 1-form w with components w, #0, w, = w,
=...=w, = 0 satisfy condition (1). Let w, # 0 at every point of M. Then
Theorem 1 implies R-R = Q(S, R). On the other hand, the manifold M is
semi-symmetric, i.e., R- R = 0 (see [8]). Thus, by the above equality, we have
on M the relation

(S, R) = 0.

ExaMPLE 2. Let I be an open interval of R with the standard metric
gi1 =¢ ee{—1, 1}, F a positive smooth function on I, M with the metric
g a manifold of constant curvature and n—1 = dim M > 3. Then the manifold
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M = I x M with the warped product metric g (see [1] and [9]) given by the
formula

grsdx" dX* = g,,(dx')? + F(x') Gopdx*dx?,

where o, fe{2,3,..., n}, is conformally flat ([11], pp. 176 and 179) and
pseudo-symmetric (see [2]). Let

f=¢ad,(F'?), aeR-{0},

and V be the vector field with local components V* = g™ v,, where v, = aF'/?,
v, =...=v,=0. Then V and f satisfy identity (5) on M (cf. [10], p. 115).
Therefore, if the function F does not satisfy on M the equation

2F 4, F—(F 4)* =0,

then the manifold M admits a concircular vector field with the non-zero 1-form
df. Now, using relation (20) with B = R, we see that the tensor R and the 1-form
w = v satisfy condition (1) .on M if and only if the equation

K

holds on M, where h is the function on M defined by
Q7 —df = hv

and K is the scalar curvature of M. In virtue of (27) and the standard formula
concerning scalar curvature of a warped product (see [13], Lemma 4), relation
(26) is equivalent to

4¢ _ 1
mK =f(F.1)2,

where K is the scalar curvature of M.
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