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Let
(A) ‘ Ay +a+... ...

be a given series with partial sums {s,}. Further, let {p,} be a sequence
of real numbers and let us write

Py = Pot+-Pyts oo - Pus P =

We call {t,} the Naorlund transform of the sequence {s,}, if

1 n
by = Pn_koSk P, .
p D Pkt (Pa#0)

k=0

Series (A) is said to be summable (N, p,) to the value s, if lim#, = s,
Series (A) will be said to be absolutely summable (N, p,) or briefly
N, pnl-summable provided that {t,} is of bounded variation, i.e. if the

series
o0
2 “‘n _tnﬁll
n=1
is convergent.

Obviously, the | N, p,|-summability implies (N, p,)-summability, but
not conversely (1).

(1) This follows from the following example: Let p, =1 (n =0,1,...), and
let an = {—1)™(m =0,1, 2, ,..). Then

- | 1/(k+1) for k even,
S for k odd.

Clearly {x converges to zero, but

_ [Lk+1) for & even,
[t —tk—1| = l 1/k for k& odd.
oQ

Hence, Y |tp—tr_1| diverges (see [1], p. 168-169).
k=1
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The conditions for regularity of the method (N, p,) are:

n

— 0, (b) [Py | = O(Py).
0

V=

Pn
Py,

If {p,} is non-negative, then the condition

lim 2% — ¢
is necessary and sufficient for the regularity of the method (N, p,) of
summation (see e.g. [5], p. 353).

In the present note we shall transfer some results due to Kogbet-
lianz [4] to the case of certain classes of Norlund means. The most impor-
tant of them are the following:

TueoreEM A. If a given series is |C, a|-summable (a > —1), then il s
also |O, a-p|-summable, with arbitrary f > 0.

TueorReM B. If two given series are summable (C, a) (a > —1) to A
and (C, p) (B = 0) to B, respectively, and, moreover, if the first of them is
\C, al-summable, then their Cauchy-product is |C, a+p|-summable to AB.

THEorREM C. If two given series are |C,al- and |C, p|-summable,
respectively, then the series obtained by their multiplication is also absolutely
summable, namely |C, a-p|-summable.

The below presented theorems are similar to these of Kogbetlianz.
However, they establish only a partial generalization of Kogbetlianz’
results.

At first, we introduce the following classes of (N, p,)-means:

A sequence {p,} will be said to belong to the class M®, if

(i) 0 <Pnpr<pPu O 0<Pp<Pppx (n=0,1,2,...),
(ii) PotPrte e P = Pu/ o0,
1)pn
(ii) fim NP a0,
00 Pn

In particular, if we assume the condition

(]JJ) im (’n—l—l)(pn—pn_l)

Nn—00 p’n

=a—1 (a>=0),

instead of (iii), preserving conditions (i) and (ii), then {p,} will be said
to belong to the class M®, a = 0.

Obviously, if {p,}eM®, then a fortiori {p,}eM? but not conversely
(see [7], Lemma 1, p. 239-244).

In the sequel, we shall require the following lemmas:
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LEMMA 1. If {pnjeM®, a > 0, then there exists a constant C such that

\1 1 oi k=0,1
H_LM’LIW'Pn < P, (k s 1, ...

The proof follows immediately from the hypothesis and from a lemma
of Pati [10].

In order to formulate the next lemma, we introduce the following
notation:

n
Py = py+P1+...+Pnj Qn = Qo+t Gy o= Zkan_lﬁ
k=0
Rn - ’I‘O+T1+...—|—?‘n.

LEMMA 2. The sequence {P,Q,[R,} is bounded in each of the follow-
ing four cases:

a) {pn}leu’ 0<a<ly {QR}eﬂIﬁr p>0;
b) {pa}eM®ya>0; {gu}eM?, 0<f<1;
c) Pa}eMy 1< a<2; {gu}eM', 1 <f<2;

d) Pny1Pn> 5 {Dn} eM®, a>1;  Guia/qu , {qn} fﬂﬂy g>1.
Proof. Let us note that if p, > 0 and 0 < ¢, , then

Rn>gn ZPIM

=0
and, similarly, if ¢, > 0 and 0 < p,x, then

Rn > Pn ZQI\:
k=0

Basing on these inequalities, we easily prove a) and b). Taking
m = [n[2], we write in the case c¢)

— e e e S e

1a>0
2

for 1 < a < 2 and »n large enough. Hence P, = O(P,,). In a similar man-
ner, we find that @, = 0(¢,,). Since

Rn > PQO
for p, > 0 and ¢, > 0, we have P,Q,/R, < P,Q,/Pn@n» = O(1). In the

case d) we find for n = 2k

Pt P . ols
Q ok Qar — o) Parqon

< = :
R, PO Prqx
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Since p,../p.N, we have

Poae P Po—r Pr+1 < (Pk+1)k:(
Pk Pok-1 Pok—2 Pk P
v — k(P 1—p1)D
= [(1 - ?kﬂ_pk )pkl(‘nk+1 pk):l Wret 1= PR/ Pk
Pk
< " Pr1-PRIPE 0(1).

14 Prr1— Pk )l]c
Pk

Remark. For # >0 and y >0 we have e > (14a/y)"" (see [3],
p- 216, (n)). Thus py. = O(px). In a similar manner, we find ¢, = O(qx).
If » = 2k-+1, then, according to p, ,/p, and ¢, /¢y, We have

Prly = ?2k+lQ2k+l < (1+ Paks1 Pak ) (1+ Gorr1 Gk )P2kQ2k

E, P Qs Par P Gor Qo | Pr@r
P q1 \ P @
e
( Po q | PrQx

and this case reduces to the previous one. Therefore P,Q, = O(R,) in
both cases.
Let us write

(n+1)pa (n+1)¢n
Op = —— ﬁn:_Q—_"-

'PN
We define: a sequence {p,} will be said to belong to the class BV M¢,
a> 0, if {p,}eM* and if {a,} is a sequence of bounded variation.
LEMMA 3. Let {py}eBV M, a >0, {g.)eBVM",>0. If a =2 (or
B = 2), we suppose additionally that p, . ./p.x (0r @u.o1/qux). Then

L

(ra} e BV (ry = Y prgas) (2).

k=0

Proof. Since R, > P,,Q,, > + oo as n — + oo, {r,} satisfies condi-
tion (ii) of the class M“"? for arbitrary positive « and p. Now, we shall
prove that

n 2 Tﬂ
(3) lim (n+2)rn = a+f.

nN—o0 R n

(2) In the case when 0 < p,N and 0 < ¢px simultaneously, the relation
{ra} e M*"? will mean that {r,} satisfies condition (i) only for n large enough. It seems
interesting to find out whether this relation holds without that restriction. A similar
lemma, but less general, was already proved by the author of this note (see [7],
Lemma 3, p. 248-252, and also the proof of Theorem 1, p. 257-258).
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Taking
(n+2)r,
n — R ]
we have
1\ 1 -
(4) Yn = Z akPan—kWL —_— Z ;Bkapn_k .
R, k=0 Ry k=0

Therefore and by (4), in order to prove formula (3), it is sufficient
to show that the methods ||a,:| and |b,| are regular, where

‘qun_k/Rn for 0 <k <m,
App =

0 otherwise;

b Qkpvz~k/Rn for 0 = k B n,
nk —

0 otherwise.

This follows by means of easy calculation, applying Lemma 2.
Next, we will prove that
2 —¥p—
(5) lim AT L

N—so00 Irn

L.e. that the sequence {r,} satisfies condition (jjj) of the class M. By
substituting

- (n+1)(Pn—Pn_1) B (‘n‘l‘l)(q'n_Qn_l)

an: ’ n:

Pn Qn
and maultiplying both sides of the equality

’

Pn—Tuy = ) Puk(Gn—Gi_1)
k=0
by (n+2)%, easy calculation shows that

n+2)2 (1, —¥,_ 2 = _ 1 = =
(6) ( +2)2(ry—"7n_1) _ i gakﬂn—kpkqn—k+ E};ﬁkﬁkiﬂnquk—i—

R,

1 )k \F _ 2k+1
— 2 lPig s
Rn,;[(m)““’” 1 a"] Hn

Now, we will investigate the limit of the first term on the right-
hand side of formula (6). Namely, we will show that

+

n

Zakﬁn—kpkq'n_k = a(ﬁ_l)

n -

(7) lim

Nn—o00

Colloquium Mathematicum XVT. 14
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We write a, = a+ép, En = f—1 +¢,, where &,—0, e, —0. Let N
denote a natural number such that || < e and |e;| < & for k > N. Break-
ing up the sum appearing in (7), we get

We estimate

N
| ¥ g xPrasBaic| < O@n)(IL—Bl +e),
k=0
n—N n—N

I

N (ater)(B—1+en 1) gniPr
kE=N-+1 k=N-+1
— a(f—1) Ry+e0(Ry)+0(Py) +0(@n),

n

Y [ <o@aate.

k=n—N+1

n—N n

N
N+ Y+ Y =ap—1)Rate 0(R)FO(P)+0Qn)-

k=1 N-+1 n—-N-+1

Let us note that in all cases of monotonicity of the sequences {p.}
and {g,} the following relations hold:

P, =o(R,) and @, =o(E,).

Taking into consideration these relations, we deduce the validity
of formula (7). This, together with formula (6), gives the relation

. (n42)2(ra—"a_1)
lim

N—00 Rn

= (a-+p)(a+f—1).

Combining the last relation with (3), we get relation (5).

Thus, we have proved that the sequence {r,} satisfies condition (jjj)
of the class M*"?. Tt remains still to examine condition (i) of this class.
If at least one of the sequences {p,} or {g,} is monotonically increasing,
then the sequence {r,} satisfies condition (i). This follows immediately
from the fact that the expressions

Fa—tas = 3 tua@e—pis) AN a—tuy = > Paok(@e— i)
k=0 k=0

are positive,
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If both sequences {p,}; and {g,} are monotonically decreasing, then,
in view of (5), the sequence {r,} decreases if a5 —1 < 0 and increases
if a+pf—1> 0 for »n large enough.

It remains still to show that if the sequences {a,} and {8,} are of
bounded wvariation, then {y,} is also of bounded variation. The proof
is based on formula (4).

Writing

1 ‘fw )
Ay = %2‘ Pign iz, Bn —
R %—0

3
Qkpn_kﬂky

we have

An = 4491— 1

1 2’ n _'_T'n
= ZPanﬁkak“%i——ZPan EQx 1+ —%Zpk% EOk_1

R, R R,

1 Rl
= = Panflc(ak_ak 1 Zﬁkl]u kOr_1

?l«l

n

-y
—_— P
}?an 1-}1 kQn_kO0k_q.

Applying the Abel transformation, we find the formula

\ |
(8) Ap—dn_, = Zqu.n_k(ak—ak_l)Jr

in

n-1

Z(qun o) s — )

n Lir=o ‘v—o0

Ran 24 (ZP”Q" v)(ak 1—ag)  (a_,=0).

If 0 < ¢, , then

A=Ayl < { Zmn elas il 4 — ZRuak—ak 11}.

If 0 < gn7, then

[Adn—An_1| < 0(1 {qn Zpklﬂk—ak 1|+ n kak]ak_ak 1|}

k=0
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First, we get

Qx
SscsconfSrn il S}
+§Rklak_ak—l|§ Rn;‘;n_l} = 0(1) Zlak_akl‘ £ s,

Next, in view of relation ¢./R, = O(1/nPy), we find that

o0

2 ‘ATL_AH—1|

{Z-Pklak“'ak 1]2 +kak\ak_ak llZnR }
- 0(1)2|ak—ak_1l < oo.
k=1

Finally, we have

oo

(9) Z |Ay—Ap_y| < oo,

n=1

Tn a similar manner, we find the formula

(82) Ba—Bpi= - qupﬂ — i)+

(2 qoPn— v)

v=0

~ g (Zvaﬂ_ o) Bia— ).

If 0 < p,\, then

1\ .\
BamBasd <0 | 5= > QebaslBe—fuoil+ L N Bele—pecil}

n =

If 0 < pp, then

unﬂrﬁk_lw

k=1

4 2o ZQk\ﬁk—ﬂk 1+ Zwk]ﬁk—m A

'R«k

y4
|Bu—Bu_1| < 0(1){ R’:
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By a similar estimation as in the case of convergence of the series (9),
we conclude that

(10) D IBa—Bail < .

Since y,—yn_ 1 = (Ap—Ayu_1)+ (Bp—By_1), it follows from (9) and (10)

that
2 b’n—yu—ll < o0,
n=1

This together with (5) proves that {r,}e BVM**’, for {r,} satisfies con-
ditions (i) and (ii).

LEMMA 4. Let the partial sums of a series Y'u, be bounded, let o, denote
the n-th (N, p,)-mean of this series, and let a, have the same meaning as
above. Then

n n
(11) WP oy —| > kpn_s]| < M Y Pila—a,
k=1 k=1

Proof. We write (s_; = 0)

Hence

‘ ) Pn
Op—0p_1 — k_’pn k , Oy Ic n_kUg— Op_1;
nP Z P 4- P

K
nk_ 3

where a, has the same meaning as above. Applying the Abel transforma-
tion to the last sum we get

Py,

n n k

1 " 1 v
- Tr— i Pu-n) — gy ).
np, ,‘f‘f - P, o )+ nP, g(,,{-;’ v o) (ar—agy)

(0n—0n-

Hence the boundedness of partial sums of the series >, implies
Lemma 4.
In order to formulate the next theorems, we introduce the following

notation:
n n
1 1
an kSky by = ZQn_ksk; Ty = szrnqksk’
Qn k=0 " k=0

k=0
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where
n n
P = E Prn_k, R, = E Pan—k, Vp = Op—0Op_1, My = tn—tn_1.
k=0 k=0

THEOREM 1. Let {p,}eM", a = 0, and let {q,} be a convex or concave
sequence such that {q,}eM P with arbitrary g > 0. If Dy is | N, pyl-sum-
mable, then it is |N,r,|-summable, with {r,}eM*+?,

Proof. Since

n k n n—k n
-S_ Qn_k E Pr_vSy = E Sk E Qn_lk—vPov = § Yon—kSk)
k=0 rv=0 k=0 v=0 k=0

it suffices to prove the series >'|o,—o,_;| to be convergent if
n
STy ] < oo,

Owing to formula (8), we can write

n n—1 k
3 4 d 1 1
(13) Tn_—1n,41 == R—nZpkfi'n_k'”k_E:Z(vaq'n—v)vk_l’
k=0 k=0 k=0
n—-1 k

Ty B
S S

+
RnR'n—l 5=0 =0
Decomposing each of the first two sums on the right-hand side into
two sums from kK =0 to k = m = [n/2] and from k =m+1 to k =n
or k = n—1, respectively, and applying the Abel transformation to the
inner sum of the second term, we conclude that the absolute value of
the expression obtained in this manner is less than

m m k-1
e N P el +—— 3l 3| Pyt
= n—kl|V Vi n-v- Yn_v—
RoR, £ kGn_x|Vk R, . & k e An_v—Gn v

n

1 .
+0(1)—- 2 kPign_xlvel = A-B+C, say.
nlhin k=m41
In order to evaluate the expression B, we distinguish two cases:
1) () <& qn\ and 2) 0< n 7 - y
In the first case the convexity of the sequence {¢,} implies

O < q'n,ﬁv—l_f{nav g Qn_vfz_Qn*v-al g QN,—m_z_Qn—m—l ‘g qm_qm-H'
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Thus

B~ 7”(Qm”'9'm+1 Zl”"IZP
- mR ZIMZP

v=0

In the second case the convexity of the sequence {g,} implies

0 < q'n_v_Qn_v—l § q'n_v+l_Q7L-—z: g Qn_qwt—l

B<0(1)-2 Z[MZP

However, the concavity of the sequenee {gn.} implies

and

B < f}: (qn ki1~ Qn_k \”k]ZP
= 00)— j"_k 'H;P =oa 2"’"'2]?

Now, we observe that in both cases

ZkPan e |V -

k=1

A4C = 0(1

’.'L

Finally, in view of formula ( 3), we have

un"_l,n— 1 - O

Im Z kP v
+ . Z kP |vi| + Z Ry |vy| .

'n—l k=

Hence we get

00

N YA m \ 1 1
DT —Tai] < 0(1)'ZkPk1vkt( L )+
1 | kRy, n*P,
N= - k=1 n=1k
kPl
+ 2 %l Vel P,
k=1 m=Fk e -
oo [s. 2} Tn o0
+ 3 Rl 3 — o) Dl < oo
k=0 n=k v -1 k=0
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Therefore we have

D Ta—Ty | < o0,
n=1

which ends the proof of Theorem 1.
Before we formulate the next theorem, we introduce the following

notation:
n n
1 1 ,
Op = ? g Pn_kulm tn == Qn_kruk1
" k—o " k=0
n "
* 1 * 1
Op = Prn_rUi, {n — Gn_1Vk,
pn To—0 qn k=0
n n n
1 .1
T, = — Rp_xWyy Tp=— Pu Wiy Wy = U Vp_k-
Rn T’n
k=0 k=0 Fe==0

‘We write (%)

J = ;inn ; Gn " ;‘ Up " ; v, "
(3 B (T S = (TP (3 ).
=0 n k=0 n n

S
B

n
J = anI;JQkPn_ktzcn_k-

n

On the other hand,

-
J = ZPnac”anm”anm” == Zan”Z Wy,
n n n n

n

Hence
n
1
J = anz Ry _rwyp = ZR,LTN.@'”.
n k=0 n

(®) The above considered power series have a positive radius of convergence.
This follows from the theorem stating that if (N, py) is regular and Y an = s(N, pa),
then the series } anx™ has a positive radius of convergence and defines an analytic
function a(x) which is regular for 0 < # < 1 and tends to s when x — 1 through real
values less than 1 (see [2], p. 65, Theorem 18), and from the fact that p,/Pn — 0 and
gn[Qn — 0, which implies that Py _1/Py — 1 and Qn_1/Qn — 1. Hence P (x) = Y Pya",
p@) = Ypna”, Q(x) = YQunz" and ¢(x) = Y gua™ are convergent for |z| < 1.

n n
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Comparing both power series for J we obtain the formula

1 v,
(14) T-n = B § Qkpfz_ktk(77b_k-
" k=0

In a similar manner, we find the formula

1 n
(15) T, = _—'Zkan_kUztn_k-
R k=0
Observe that
P
(16) On = Op_1+— 7.
" n
In fact,
1 nw
Op—G0p_1 = PnPn_1 ’% (pn_kPn'_pnPn_k) Up
and
%k 1 -
Op—Op_1 — — Z (pn_lan __'pnPn_k) Uy,
PaPr_1

k=0

Comparing the last equations we get formula (16).
In a similar way, we find the formula

- Q
(17) = tu_1+ —— fin.

n

THEOREM 2. Let {p,}eM® a >0, {g,}eM?, > 0. If a =2 (or f = 2),
we suppose additionally p,.,[p,x (0r guo1/ga> ). If the series Yu, and

D v, are summable (N, p,) to A or (N, q,) to B, respectively, and, moreover,

n

if the series Yu, is |N, p,|-summable, then their product is summable
W

(N, 7,) to AB, with {r,}eM**"
Proof. From formulae (15) and (16) it follows that

1 v Py
T, = ——‘ZPan_k(Gk—l‘l“ — yk)tn—ic
Rn s pk

or
n

n

1 1

(18) L= Y paukoirtiit o > Palu il
Ry k=0 R k=0
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By a similar argument as in the proof of formula (7) we will prove
that

n

|
(19) - m —- ¥ prQu_i0k_rta_i = AB.
N—00 n L=1
Let o, = A-+e,,1, = B-+e¢, and let r denote a natural number such
that |ex] < e and |ex| < & for k >r. Writing

n r n

DI N

k=1 k=1 k=r+1 k=n—ri41
we have
1 n—1

| N pi@uroratn s <OQ) D Qultdl < 0Q) Y QullBl+e) = 0(Qu),
k=1 =

k r k=n—r
n—r n—r
Z kan_kakfltn_k = Z kaTL—k(A+6k—l)(B+E;L—k)
k=r+1 k=r41

n—r

= AB Y piQu 10 (Ry) = AB-RBy+60 (Ry) +0(Pr) +0(Qn),

k=r+1
Y plnroicatas | <O Y pe(lAl+e) = O(Pn).
k=n—ri41 k=n-ri1

Hence, because of the equations @, = o(R,) and P, = o(R,), we get

s

1
R,

Ly e

= AB+0(¢e)+o0(1),
whence (19) follows. ‘
Let us denote by d, the second term on the right-hand side of for-
mula (18). Theorem 2 will be proved if we show that
limd, = 0.

M—00

By hypothesis the series » u, is |N, p,|-summable. Hence the series
n

[e.o]

D) |v| is convergent. For the same reason the series D vy, is (N, gy)-sum-
k=0 n

mable. Hence there exists a positive number M such that i, < M
(n =0,1,...). Therefore for arbitrarily small positive number ¢ there
exists a natural number N such that

oo

Z lvi| < €.
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Since @, = o(R,) and P,Q, = O(R,), we have

N n
On PrQn_r
|dn| < M (?E_ Zpkl”kl"‘ 2 —"—gf”—'”lvkl)
" k=0 k=N+1 "

& (Q")+0( "Q“‘) Z i = (1) 4-0(e) = Oe).

R R
n n ey 2

TUEOREM 3. Let {p,}eBVM®, a > 0,{q}e BVM’, >0. If a=2
(or f = 2), we suppose additionally that p, [P, (0r ¢u, /g ). Further,
let the series E U, and Z'vn and their product have bounded partial sums.

If the series Z”n and an are absolutely summable (N, p,) and (N, q,),

respectively, thew their product is also absolutely summable, namely |N, r,|-

-summable, with {r,}e BV IM**F (r, = Z PiGn_)-
k=0

Proof. Let
n
Wy = Zukvﬂ_k.
k=0

Since {u,}, {v,} and {w,} are bounded sequences, we can write
;‘mﬂ kg; ktp_rpwp = (; munac") (; rnzv”) = (; wn:v”)’ ;rnwn
- (Z Up X" 2 vnm”)’ (Z D" 2 qnm”)
= %‘ MUy, T ; V& ;pnw ; I +
+ Z Uy " Z no, " anwn 2 G
n n
= (Zﬁﬂn 2 kpn_x uk) (2 x" Z Qn~kvk) +

n

+(;‘a} qun kvk) (Zg; Vpﬂ kﬂk)

Hence, using the above introduced notation, we find the formula

(20) Zklrn Wy = Zgn ktn kapk_vuv+ an ko'n kZQJQk vV
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Owing to the estimations given in Lemma 4 and to the assumptions
concerning the boundedness of partial sums of the investigated series,
we see that

ITn"_-Tn—ll < kl"’k' It;—kl_l_
n n k
+Zkapn_kl}ukl lo"r‘:—k“{" ZQn_kZ-PvIa/u_av_ll‘l’
k=1 k=1 v=1
n k n
+ X puk X QulBo—Boal + D) Relyr— il
k=1 V=1 k=1
Since

P, 1 n 1
::()( ) and Q == O ’
nk, nQy, nk, nPy

we find, in view of formulas (16) and (17), that

ZL’F —T,,| <001 ){273 ZAqun eloel| o+ g 4
Moo 1 n—k
c0 1 n
k n—k n—k— il n—
+§an’§ QuPn_r |l | On_r 1+ pn‘ki’ k|t

ﬂk_llg nizn +

"I‘Z‘Pk]ak"“ak 1|Z

n=k

> = 1
+§1Rm—yk_ﬂg; an}.

By hypothesis the series »wu, and v, are absolutely summable,

thence the series

2 —Op— 1 and Z (tn - tng 1)
n=1 n=1

4

are convergent. Therefore there exist limits lim ¢, and lim {,. Hence

N—00 n—o0

there exists a positive number M such that

lopl <M and |l <M (n=1,2,...).
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Consequently,
oo Qk oo qn o _P Q n
Ta=Ln 3| < O(1 ka : ( Z——“‘) v*n nZ .
g' 1{ ( ){ké:f Alvl.l kR +n:k R, +né14 R, “ [VA[X
X P Y P
Xlﬂn_kl+2l kalﬂki( LENT s o
kR nR,
k=1 n=k
5y Pun 5
+2- P = Z |#k‘ll’n_k|+2]ak—ak_1l—|-
n=1 = k=1 k=1

+ j 1Bk —Br—1l + S |7’k_'}’k~1|}-
k=1 k=1

Since

D) el and
k=1 k=1

are convergent, their Cauchy product, with the n-th term

n

D) ol Ll

k=1

is also convergent. In consequence, the second and the fourth series on
the right-hand side of the last inequality are convergent. Both remaining
geries oceurring in this inequality are also convergent, because

qn 1 pn 1
P — 0 Rn - 0 - d h -

Finally, we have
yITn“Tn-—I] < oo
n=1

which ends the proof of Theorem 3.
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