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1. This is a postseript to the paper [1] written more than 30 years
ago and concerning the differentiability of integrals. The main result
of the paper was that if f(x) = f(»,, @5, ..., ®,) is in the class L(log"L)"™*
in the n-dimensional unit cube

(Qo) O <1, 3 =1,2,un,
then the indefinite integral

F(E) = [ fdo
B

is strongly differentiable almost everywhere in ),; more specifically, if
I denotes any mn-dimensional interval (with sides parallel to the axes)
which contains », then almost everywhere in (), we have

(1.1) —— = f(@)

as I shrinks to .

The paper also contains a proof of a somewhat more general result,
namely, if instead of assuming that all the sides of I tend to 0 independ-
ently of one another, we impose the condition that » of them are kept
equal (1 <r << n), then the condition feL(log"L)"~' (which was shown
in [2] to be best possible) can be replaced by feL(log"L)" .

In this note we give a generalization of the latter result; this gene-
ralization may be justified by the increasing significance of theorems
on the differentiability of integrals for the theory of singular integrals
and, indirectly, partial differential equations. Moreover, the argument
here is somewhat different from that of [1], and the new argument may
be of some interest.

THEOREM 1. Let 1 < s < n and consider only intervals I whose sides
have no more than s different sizes. Then if feL(log" L)’ " in Q,, we have
(1.1) almost everywhere in Q, as I shrinks to x.
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It is clear that this result contains the preceding one as a special
case.

2. In what follows we write [f||, for ( [ |f|"dz)"".
o

LEMMA 1. Let feL(Q,) and

(2.1) f(w) = Sup —— | |f(y)|dy,
Qo IQ\

where ¢ < @ is an n-dimensional cube. Then if & > 0 and B (&) = {reQ,:
f(x) > &}, we have

Hflll’

(2.2) (&) < A :

where A depends on n only.

This is immediate: each zeF (&) is contained in a cube @ < (), such
that f fldy > Q] &, and by the elementary version of Vitali’s covering

lemma we can find a finite number of such @’s non-overlapping and of
total measure > |E(£)|/A; adding the inequalities for these (’s we are
led to (2.2).

LEMMA 2. If fel”(Qy),1 < p < oo, and f(x) is given by (2.1), then
}ELP and

2.3 fll, < 4
(2.3) I/1lp \p—_THpr,

where the constant A depends only on n and p, but is bounded over any finite

range of p (1)

Lemma 2 is a corollary of Lemma 1 if one uses Marcinkiewicz’s
theorem on the interpolation of operations (see [4y;], p. 111). For the
operation f= Tf is sublinear (ie., |7(f,-f)| < |Tf,|+ |Tf.)) and by
Lemma 1 it is of weak type (1,1). Since it is clearly of type (oo, co), it is
also of type (p,p),1 < p < oo, and the best constant K, in the ine-
quality ||fll, < K,|fll, is O{1/(p—1)} (see [4y/], p. 116, equation (4.21)),

LeMMA 3. Let fel”(Q,),1 <p < oco,1 < s <, and let

(24) Fo@) =sup [ 1wy,
o || f
() If we replace A/(p—1) by Ap/(p—1) on the right of (2.3), the new 4 will

be independent of p, but thls point is without importance to us since we are only
interested in the values of p close to 1.

Of course both Lemma 1 and Lemma 2 can be found in [3], but we could not
refer the reader to any proof of (2.3) with the coefficient 4 /(p—1) on the right (which
is important for us).
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where I is an n-dimensional interval whose sides have s (or less) different
sizes. Then f*eL” and

A
(2.5) If*llp < o= IIme

where A depends on n and p, but is bounded over any finite range of p.

We may assume that f> 0. The proof is by induction in s. Suppose
that s >1 and that Lemma 3 is valid if s is replaced by s —1. We may also
assume that the various sizes hy, hy, ..., h, of the sides of I correspond
to fixed groups of coordinates x,, z,, ..., ®,. Write 2z = (2, x""), where a'
is the totality of coordinates corresponding to h,, and "’ the remaining
coordinates. Correspondingly, we may write Q, = Q;xQ,, I = Q' xT e
where " is a cube in the space of 2’ and I”" an interval (with s — 1 diffe-
rent dimensions) in the space of x”’. The condition / > # means x' )’
" el” and if we set

(2.6) fr@ o) = Sup - [f@,y")dy",
I =yt |I I
2.7 £ 33 ,I:’ iU”
(2.7) J™(@ ) = Sup ,Q‘
then from
1

(2.8) [ - ( ’ y”)d}l”]d'l’

1|ff lQle!IIIIfy’ 4

we deduce that
f(@) < fr*(a' | x”).

Hence using successively Lemma 2 and Lemma 3 with s — 1 instead
of § we obtain

f {F@ide < [{ [T @ &) dr'}dr”

QOI QO
<( 4 )” f{f[f (« | &) da’} da’
T\p—1/ o <
[ 4 )” f{ ff*(cc’ | x”)”dw”} dx’
S \p—1) o, o
(ATl L e
p—1/\p—1

— (=55 e,

and Lemma 3 is established.
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3. LEMMA 4. Suppose feL(log"L)*(Qy), 1 < s <mn, and let f*(x) be
defined as in Lemma 3. Then f*eL and

(3.1) Qf frdw < AQf fl(log* |f])*de+ B,

where A and B depend on n only (?).

We may assume that f > 0. For each t =1,2,... we denote by
fx(x) the function equal to f(x) wherever ok=1 < f(x) < 2* and equal to 0
elsewhere; by f,(z) we denote the function equal to f(x) wherever f <1
and equal to 0 elsewhere. Hence f = }f; and clearly f* < Mfr. Applying
Lemma 3 to f, we have

A ,
Ifelle < —— &'P2¥,

Jgtde <2l < =

(p—1)°
where e, denotes the measure of the set of points where f; == 0. If we
set p =14+1/(k+1) for k = 0,1, ..., we obtain

ff dr < 2 ffk v < A X(k+1)2" g E+0Ik+D,

Observe now that those k for which e, < 3% contribute a finite
sum, depending on n only, to the last sum while for the remaining &
we have ¢*t)/E+2) < ge . Tt follows that

[frdw <A D] (k+1y2%+B < 4 [ fQlog*fydz+B,
Qo 0 Qo

which completes the proof of the lemma.
LEMMA b, Let 1 <s <n and let

(3.2) futw) = timsup = [ 1)1y,

oz |I] ¢
where the interval I shrinking to x has only s distinct dimensions. Then,
if feL(log™ L)™', the function f, is integrable and

(3.3) [ fedw < 4 [ ifi(og"|f))*" da+ B,
Qo Qo

where A and B depend on n only.

() This is actually a special case of Theorem (4. 41ii) due to Yano in Chapter
XII of [411] except for the unfortunate fact that the latter was formulated for linear
operations while our operation f* = 7'f is sublinear. Rather than leaving to the reader
the task of verifying that the proof is actually valid for sublinear operations
we repeat the argument in the special case that interests us.



DIFFERENTIABILITY 01« IA TEGRALS 203

We may suppose that f > 0. Under the hypotheses of the lemma,
f(z) = f(a', 2'"), qua function of z"’, is in the class L(log™L)*! for almost
every &’ eQ;. For any such 2’ consider the function f*(z’|2’") defined
by the equation (2.6). By Lemma 4, with s — 1 in place of s,

ff*(w’ | &' Ydx'" < A ff(w’, z'") {log*f (2, ')} 'da" +B,
Q% Q,

and integrating this inequality over w’eQ;, we see that

(3.4) jfwwlwﬂdwdw'gziff@HMngmV*dw+B

1t follows that for almost every :L”eQ the function f*(xz'|«") is
integrable in «' over Q Let us fix an .I?” for which this occurs. If
=@ 0" cd=¢ I” then, by (2.8),

0l 1w J\\T§T~ff v layay,

s0 that
(3.5) fal@) < f5(@" | &)

for almost all ', by Lebesgue’s theorem on the differentiability of in-
tegrals. It follows that (3.5) holds at almost all points of the cube Q,,
and (3.4) leads to (3.3). This concludes the proof of Lemma 5.

4. The proof of Theorem 1 is now easy. We apply (3.2) to the func-
tion kf, where k is a positive constant, and obtain

B
[ fudw < A [ 1f| Qog* 1y o+ =
&g

If %k is sufficiently large, the term B/k is arbitrarily small. A decom-
position of f into a sum of two functions f,-+f,, where f; is continuous
and the integral of f,(log™ |kf,|)* ' small gives the theorem in a routine way.

5. We conclude the note by remarks which do not require detailed
proofs.

Revert to Lemma 1. Its proof is based on the elementary form
of Vitali’s covering lemma. But the latter is valid in a more general case.
For suppose that we have a system of n functions

(5.1) ¢ (1), ‘Pz(t) oy @ul(l), 0<t <1,

which are increasing, vanishing and continuous at ¢ = 0, and positive
for 0 << ¢ < 1. Suppose that each point of a set I of finite measure (or
even only of finite outer measure, for we need not assume that ¥ is measur-
able) is included in an interval I whose sides have lengths ¢, (1), ..., ¢, (1)
for some ¢ in (0,1). Then we can find a finite number of such intervals
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I, non-overlapping and of total measure > |E|/A, where A depends on
n, but not on the functions ¢, ..., ¢, (see [1] or [411], p- 309, Lemma (3.2)).
It follows that Lemma 1 holds 1f by @ = Q(¢ (2.1) we mean not cubes
but n-dimensional intervals of the form ]ust descrlbed. Hence, as the
proof shows, Lemma 2 is also valid in this case. This in turn extends
Lemma 3 to the case when the sides of / can be split into s disjoint groups,
the sides of the j-th group being given by n; functions from (5.1) (n,-+
+ny+...+ng, = n) depending on the variable ¢;; the variables ¢,, t,, ..., 1,
are supposed to be independent of one another. We will call for brevity
such I’s intervals of type (¢, s). Lemmas 3 and 4 hold for such intervals,
and so does Lemma 5 if the interval / in (3.2) is of the form (¢, $) (which
now means that each of the variables t,,1¢,,...,{; tends to 0) and we
arrive at the following generalization of Theorem 1:

THEOREM 2. If feL(log"L)’ ™', 1 < s < n, then we have (1.1) almost
everywhere in ¢, provided the mtefrvals I are of the form (¢, s).

It is obvious that this immediately leads to a somewhat stronger
conclusion in which instead of (1.1) we have the relation

17 [ 1f(y)—f (@)l dy — 0.
I

Also the condition that I > x can be replaced by a somewhat weaker
one: I can be enclosed in an interval I, [ > x, I is of type (¢,s) and
|I|/|I| is bounded by a constant (dependlng poss1bly on x).
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