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0. In a recent paper [1] K. Golema has noticed that the category
of compact groups is closed with respect to taking free products in the
category. The aim of this note® is to give some more information about
the structure of such free products. We show that the free product in
the category of compact groups is the Bohr compactification of the al-
gebraic free product equipped with a natural topology('). We shall prove
this via a theorem of its own interest.

ProrosiTioN 1. The algebraic free product x* G, of a family of com-

ae

pact groups {G.}.4 18 isomorphically embeddable into a compact group
by an isomorphism ¢ continuous on each of the groups G,, aeA.

1. Free products in the category of compact groups. Let I' be the
category of compact groups and let {¢ },.4 be a family of groups in I
The free product of the groups {G, .. in the category I'is a unique

group in I, denoted by * @,, together with a system of monomorphisms
aed

1. G, —~ * G,
aed
such that for any H in I" and any system of homomorphisms h,: G, — H

there exists a unique homorphism h: % G, > H such that h, = he,.
aed

THEOREM (Golema). For every family {G, }uq, G e’y the free product
* (G, exists.
aed

Postponing the proof of Proposition 1 to the next section, we con-
sider now some of its consequences. Let ¢, be the restriction of ¢ to G,.

* Written while the author was visiting associate professor at the University
of Washington, Seattle, Washington, U. S. A.
(!) The Bohr compactification of a group @ is understood to be a compact group
H in which G is continuously isomorphically embedded and such that any continuous-
almost periodic function on G extends to H.
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We see that the group (¢ generated by the subgroups ¢, (¢,), aed, in

* (I, is mapped isomorphically by % onto * @,. The uniquness of * @,
acd aed aeAd

shows that G is dense in * ,. This proves
aed

ProrosirioN 1.2. The free product in the category of compact groups
of a system of groups {G. ... 18 the closure of the algebraic free product
* G, (the monomorphisms t,, aeA, being the ordinary mappings of the

ae.

groups G, onto “one letter words” subgroups in * @,).
aeAd

The condition of continuity of @, can be formulated in a slightly

more convenient way by introducing a suitable topology = in x @,
aed
such that the isomorphisms ¢, are continuous and any homomorphism %

of * (G, into a topological group H is continuous in 7 if and only if ¢,k
aed

is continuous, for all aeA.

An easy way of defining the topology 7 is by exhibiting a system
of pseudo-norms d each of which is given by a family of pseudonorms
{do}aea, where d, is a pseudo-norm in G,. If g,... g, ¢ * G,, where

aed

0o = t(9.)s §uc@ys and o # gy, for all ¢ =1,...,n—1, then

n
A(Jay -+ ) = D, Auy(ga)-
t=1

It is easy to see that d is a pseudo-norm and that if for an element

ge * G, we have d(g) = 0 for all pseudonorms d, then g = e. Moreover,
aed

if 7 is the topology defined by the pseudonorms d, then ¢, are continuous

mappings from ¢, into = G,, and, if for a homomorphism A of * @,
aed aed

into a topological group H the mappings he, are continuous from @, to
H, then & is continuous in 7. '

Remark. It would seem desirable to find an easy way of describ-

ing the topology 7, in @, which is the weakest with respect to the
aed

property that every homomorphism % from =G, into a compact group
aed

H is continuous if and only if ke, is a continuous mapping for each aeA.
The theorem of K. Golema and Proposition 1 imply that such a topology

exists: it is simply the topology induced from =* @G, onto =* @, after
aed aed

the embedding. This, however, is a highly ineffective procedure and,
may be, one cannot hope to find a description of the topology 7, as simple
as that of 7.

The Bohr compactification of a topological group G is a compact
group G together with a continuous isomorphism ¢ of G into @ such that
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for any compact group H and any homomorphism & of ¢ into H there
is a unique homomorphism % such that kp = h.

An equivalent definition of @ is that for any continuous almost
periodic function f on G there exists a unique continuous function f on
G such that f(g) = f(p(g)) for all geq.

In virtue of what we said above, we have

ProPOSITION 1.3. The free product x @, in the category of compact
aed

groups of a system of groups {G.. is the Bohr compactification of the
algebraic free product x @G, equipped with the topology t.
aed

2. Unitary representations of free products of compact groups. In
this section we prove a theorem on finite-dimensional unitary represen-
tations of compaet groups of which Proposition 1 is an immediate con-
sequence. Before we formulate the theorem we recall some definitions
and notions.

All representations considered here are homomorphisms into the
group of unitary operators of a finite-dimensional complex linear space.
If the represented group is a topological group, we assume that the re-
presentation is continuous. For a given representation o of a group @,
we denote by L(p) the linear space on which the unitary operators ¢(g),
ge@, act. For a given finite family of representations g¢;,¢ =1,...,n,
of a group G the direct sum of the representations p; is defined as the
representation ¢ of ¢ such that

n n n
o
Lio)=@ Y L(e) and o(g) Y &= D ailg)&
izl i-1 i=1
for all &eL(p;),t=1,...,n.
THEOREM. Let Gy, ..., G be a finite system of compact groups and
ke k
let e # ge x Gy. Then there exists a representation o of * Gs conlinuous
8=1 8=1
on each of the subgroups Gg,8 =1,...,k, such that
olg) # 1,

where I 1is the identity operator.

The proof is based on two lemmas the first of which is a well-known,
and easy to prove directly, consequence of the Frobenius reciprocity
theorem (cf. [2] and [3]).

LeEMMA 2.1. Let G be a compact group and A a closed Abelian sub-
group of G. Then for any character y of A there exists a representation o
of G and a wvector EeL(p) such that & # 0 and

o(a)E = y(a)¢ for all aecA.
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LeMMA 2.2, Let G be a compact group and let e + aeld. Then there
exists a representation o of G and a vector EeL(p) such that ||&] =1 and

(e(a)&, &) = 0.
Proof. Let A be the closure of {a"|n = 0, £1, +2,...}. Then A4 is
an Abelian closed subgroup of . Let y be a character of 4 such that
r(a) = exp(i2znw) # 1.

We consider two cases.

1. w is rational. Then there exists a positive integer n such that
g (a) =1. For each k = 0,1,...,n—1, let gz be a representation of @
and &, a vector in L(p;) such that |&] = »~"* and

(2.1) ox(a) &y = xk(“) Eree

Let o be the direct sum of the representations op, k =1
and let

.

§ = ka-

0<k<n

Then ||£|| =1 and

~

1 3
(o(a)¢, &) = (ox(0) &, &) = = D A =o.

0<k,l<n 0<k<n

2. w is irrational. Let %, 1 be integers such that

\ 1 3 1 1
(2.2) 3 < kw < T 1 <lw < 3 (mod1).
Then also

1 1
(2.3) — < (k—l)w < — (mod1).

4 2

Let
sin 2w w —8in 27 kw
6= ——-———, f=

sin2x(k—1)w ’ sin2 (k—1)w

By (2.2) and (2.3), «a >0 and g > 0 and, moreover,
asin2n kw +gsin2xlw = 0,
acos2n kw +peos2rlw = —1,

which shows that
1+ay®(a)+p5 (a) = 0.
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By Lemma 2.1 there exist representations g,, o, 0; of G and vectors
EeL(o), i =0,k,1, such that

oi(a) & = 7 (a) &, &l = A+a+p)™?, i =0,k

Let o be the direct sum of the representations oy, ox, o; and let

£ = £+ Vak,+ VBE.
Then ||&]| =1 and
(0(a) £, &) = 1-+az"(a)+fy (a) = 0.

Proof of the theorem. Let g =g, ...4,,, Where e =g, G,
and a; # a;,, for i =1,...,n—1. For each i =1,...,n, let o; be a re-
presentation of G, with the property that there exists a vector e; in
L(p;) = #; such that

leil =1 and  (oi(ga)ei, €i) = 0.

. Let dims#; = m;. Write
(2.4) 't = 0i(ga;) €0
and let

€iy €5y iy €l
be an orthonormal basis of #;. Consider the linear space s# whose ortho-
normal basis is
fefl i =1,...,0;1 <8 <my—1} v {ea™}.

This basis can be written as

Ql(gal) 92(0(12) Qn(aa,n)
11 7%; |1 m,

— P .
l == gy 000y €32 == s00 = Cpyoaey €

oA
el,---,el

with identification
(2.5) g =gy =150,

which is another way of expressing the fact that for each ¢ =1,...,n

the mapping
. ¢ for 1<s<m;—1 andfor i =n,s = My,
(26) T,'GI,; = 1 X
6;,; for s=myand 1 <¢<n—-1
extends to an isometric linear mapping of #; into #. We note that if
|j—i| >2,1 < ,j < n, then the subspaces 7;(+#;) and T;(o#;) are mutu-
ally orthogonal. For a fixed group Gs,s =1,...,k, let

A3={’I:lai=S}.
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We have
(2.7 If i,jeds and i # j,. then |j—i| > 2.

Consequently, T';(#;) and T;(:#;) are orthogonal. We define a re-
presentation o° of the group G, into the group of unitary operators of
the space # as follows:

If helGy, we put

(2.8) o'(h)e; = Tioi(h) T e;  for dedy,1 <t < my,
(2.9) O°(h)et =é  for i¢d,, 1 <t < my.

By (2.4), it follows that m; > 2 for all 2 =1, ..., n and (2.7) shows
that for any two different 7, je; the identifications (2.5) do not hold
among the vectors ef and ", 1 <l <my, 1 <m < m;. Therefore (2.8)
and (2.9) are consistent and, moreover, the space

is contained in s as a o’-invariant subspace. The restriction of ¢° to #,
is, clearly, the direct sum of the representations T;p;7T;", ied;. (2.9)

shows that the orthogonal complement of s is fixed under o°.
k

Let o be the representation of @, defined by the representations

8=1
k

o ie, if h="hy ...h, ,0;=1,...,k is an element of *1Gs’ we put
8=

Q(h) — Qan(han) s Qal(hal)'

Clearly, o(h) is a unitary operator in # and the restriction of the re-
presentation p to each of the subgroups G, is continuous, All that is left
to show is that o(g) # I. Since, by (2.8), (2.7), (2.4) and (2.7),

2 1 -1 1 my 1
0 (ga) i = Ti0s Ty i = Tsi€i"t = €54,
for i+ =1,...,n—1, we have

e(g)er = 0™(ga,) -+ 0" (9o €1
== 0

-----------------

But e; # ep», whence o(g) # I.

Proof of Proposition 1. By the theorem, for each element e

= ge % (f, there exists a homomorphism g, of * (¢, into the compact
aed aed
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group H, of the unitary operators of a finite-dimensional complex linear
space such that g,(g9) = I. Consequently, the map ¢ defined by

@(h) = <Qa(h)>ge01
maps isomorphically *@, into the product of the groups H,, ge@, and

aed
clearly ¢ is continuous on each @,.
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