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0. Imtroduction. The aim of this paper is to characterize complete
lattices in terms of equational compactness or atomic compactness of
lattices or related systems. These notions of compactness were given
by J. Myecielski (see [3] and [5]).

In section 2, we study the general connections between completeness
of lattices and atomic compactness of their orders. In section 3, the above
is applied to some problems of definability of classes of compact lattices
and to a problem of G. Birkhoff concerning the interval topology. Finally,
in this section, we construct an example of a compact topological lattice
no ultrapower of which can be embedded into an equationally compact
lattice. This is a solution of a problem from [5].

The main tool of this paper is Theorem 2.3 of [5].

1. Terminology and notation. The terminology and notation of [H]
will be used throughout this paper.

Let € = (L, ~, u) be a lattice. By ¢(<) we denote the ordered
system (L, <>, where < is the ordering relation defined in the usual
way by ~ or v on L; similarly, we define the systems (<, ~) =
(L, <, ~nyand £(<, u) = (L, <, ud. If € has the greatest element I
and the smallest element 0, then we put €* = (L, ~, v, 0,15 and call
this algebra a x-lattice.

If 2 and B are ordered systems, then by A @ B we denote their ordinal
sum. Analogously, if 2;,iel, is a non-void family of ordered systems
and the set I is ordered, then by @ 2; we denote their ordinal sum.

vel

Algebraic systems will be denoted by A, B,C,... and their sets
by 4, B, O, ..., respectively. The cardinality of a set 4 will be denoted
by |A|. Any ordinal 5 will be identified with the set of all smaller ordi-
nals, thus e.g. o is the set of all natural numbers. KeF(, means that
K is an elementary class of algebraic systems.

If K is a class of algebraic systems, then by E(C, (K) we denote the
collection of all classes of the form K ~ M, where MeEC,. We see
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that KeEC, implies BEC,(K) < EC,. We define PC,(K), QC4(K)
and UC,(K) in the same way (see [2] for the definitions of PC,, 00,
and UC,).

For a lattice £, the interval topology is the smallest topology in
T, in which the sets of the form {weL: # < a} and of the form {weL: a < x}
are topologically closed.

For a class K of lattices, Kyo and Kpo have the same meaning as
in [5].

2. Compactness of lattices. First, let us write down the following
simple proposition:

ProrosItioN 2.1. If a lattice L is equationally compact, then the
systems L(<, ~) and L(<, v) are atomically compact. The atomic com-
pactness of one of the systems L(<, ~) or L(<, v) implies that of the
system L(<).

LEMMA 2.2. If {(<) is atowically compact, then L is a complete
lattice. :

Proof. Bvidently, if €(<) is atomically compact, then £ has both
the smallest and the greatest elements 0 and 1. Let a;,teT, be an arbit-
rary system of elements of I, with 7 # . Let

B ={beL: ¥ b < a}
teT’
and consider the following set of atomic formulae, having one free variable
x, only:

2= {“ay < a”:teT} v {“wy > b": beB}.
It is easy to see that an element a e L satisfies 2'in Q(<) if and only if

a= () a.
teT

Let X’ be a finite subset of X. Then X’ contains only finitely many
elements ag, tel'; say, @y, ..., a,. 1t is easy to verify that the element
¢ =@y ...~ o, satisfies X in £(<). But £(<) is atomically compact,
thus X is satisfiable in £(<) and £ is complete.

Let L denote the class of all lattices; put L(<) = {€(<): LeL},
and let O be the class of all ordered systems. We have L(<) < O.

LeMMA 2.3. If £ is complete, then L(<) s injective in O, thus also
n L(<).
Proof. Tet 2 = ¢4, <> be a subsystem of € = (C, <><O, and

let h: 2 — €(<) be a homomorphism. We have to show that there is
a homomorphism h*: € — €(<) such that h*|A4 =h. Let us pub
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Z={B,):UcsB<cC,f:B—>L(),f|A=D~r}. Z is non-void since
(A, h)eZ. Let < be an ordering relation over Z defined as follows:

(B, fi) < (B,, f,) if and only if B, € B, and f, | B, = f,.

Then 3 = <Z, <) is an ordered system such that each linearly
ordered subset of Z has an upper bound in 3. Thus by Kuratowski-Zorn
lemma there is a maximal element (B,,f,) in 3. We will prove that
B, = (. Suppose to the contrary that there is an element ceC\ B,. Let
X = {beBy: b <c¢} and Y = {beBy:c <b}. Let u= U {f,(b): be X} and
v=J {fo(b):beY}, and if X or Y is void, then put w = 0 or v = I,
respectively (such « and v exist since £ is complete). Now let aeL be
such that » < a < ». It is easy to see that the mapping f': B’ — L, where
B’ = B, v {c}, defined by f' | B, = f, and f'(¢) = a, is a homomorphism
of B’ = B, <> into £(<). But this is impossible since (B, f,) was
chosen as a maximal element of 3. Hence h* = f, has the required pro-
perties, q.e.d. .

THEOREM 2.4. For every lattice L, the following conditions are equi-
valent:

(i) L(<) is atomically compact;

(il 18 complete;
(iii) is injective in O;
(iv)

(v)
(vi) £

Proof. By Lemma 2.2, (i) implies (ii), and, by Lemma 2.3, (ii)
implies (iii) and (iv). Evidently (iii) implies (v) and (iv) implies (vi).
Finally, by Corollary 2.5 of [5], each of the conditions (v) or (vi) im-
plies (i).

Now we are going to prove a series of propositions concerning con-
nections between so far introduced and related notions.

ExAMPLE 2.5. There is an atomically compact ordered system
which is not an absolute retract in O. It is easy to verify that such is
the system 2 = ({a, b, c}, <), where a and b are incomparable, ¢ < a
and ¢ < b.

PropositioN 2.6. If an ordered system A = (A, <) is an absolute
retract in O, then there is a lattice L such that L(<) = 2.

Proof. Without loss of generality we can suppose that & is a lattice
such that 2 is a subsystem of K(<). By our assumptions, there is a ho-
momorphism h: 8(<) —2A such that h| A is the identity mapping.
Since R is a lattice for every a,bed, there is ¢e K which is Lu.b. of a

¢
2(<)

(<) is injective in L(<);

L(<) is an absolute retract in O;
(<) is an absolute retract in L(<).
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and b. Then we have h(¢) = h(a) = a and h(c) = h(b) = b. Let us put
X ={ded:d>=and = b}. Thus h(c)eX. Let deX. We then have deX
c A c K, thus d > ¢, and, consequently, d = h(d) = h(c), which shows
that h(e) is the Lu.b. (in 2) of @ and b. The proof of the existence of g.1.b.
is dual.

ExampLE 2.7. There is a complete lattice £ which is not equa-
tionally compact. Moreover, there is no equationally compact lattice &
such that £ is a sublattice of K.

Indeed, let 8 be an arbitrary infinite set and let L = 8 o {a, b}.
Setting a as the greatest element, b as the smallest element of § and
all elements of S as incomparable elements, we obtain a well defined
complete lattice € = (L, ~, u>. Let & be an arbitrary lattice contain-
ing € as a sublattice. We will prove that K is not equationally compact.
Let T be a set with |7'| > |K| and consider the following set of equations:

2= {“i~m; =b":14 #£], i,jeT}u{“wivJ?j =a":1 #j,1,jel'}.

It is easy to see that every finite subset X2’ of 2 has a solution in L
but, of course, X is not satisfiable in K.

Let us observe that the only constants in X' are a and b, which are
the greatest and the smallest elements of £. Thus we have immediately

ExamprLe 2.8. There is a complete x-lattice £* such that no weakly
equationally compact x-lattice contains £* as sublattice.

REMARK 2.9. Each lattice is weakly equationally compact.

Indeed, by Corollary 2.5 of [5], it is so since it contains a homo-
morphic image (e.g. one point image) of each lattice which contains it
a8 a sublattice.

3. Definability. Now, we will apply the result of section 2 to some
problems concerning definability. Let us denote by &(m) the lattice
defined in Example 2.7, where m is the cardinality of the set §. Let K
be the class of all lattices ©(m) with any m. Observe first that we have
the following obvious

ProrosirioN 3.1. K s an elementary class, i.e. KeHC,.

Now we will use the class K to show that some problems of G. Birk-
hotf ([1], Problem 21b, 22, 23) are not elementarily solvable.

THEOREM 3.2. There is no set @ of formulae of the first order predicate
calculus with identity, having one free variable only, such that an element
a of a lattice L satisfies @ in L if and only if a is an isolated point in the
interval topology of L.

Proof. Suppose the contrary. Let x be the free variable in @. Let
D =d o {“ /y\wm y = ¥y”}. Thus @’ is such that an element a satisfies

@' in € if and only if a is the greatest element of € and is isolated in the
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interval topology of €. It is easy to see that, for each m < 8,, @ is sati-
sfiable in &(m), but @ cannot be satisfied in S(2%), which is an ultra-
power of all &(m), m < 8,. Indeed, I belongs to the closure (in the in-
terval topology) of each infinite set of incomparable elements of S(2%).
This contradiction finishes the proof.

LevmA 3.3. Let M be an arbitrary class of lattices. If S(m)eM for
every m < R, and ©(2%)¢M, then M¢ EC, and M¢QC,. If, moreover,
S(2M) ¢ M, then M¢PC, and SM¢UC,.

Proof. Let 2 be an arbitrary non-principal ultrafilter over . Then
P, © (1) /2 is isomorphic with &(2%). Thus by the well known pro-
perties of KC, and QC,, M¢FEC, and M¢ QC, (see [2], Theorem 2.3 and
2.8). By the same argument our assumption gives M¢U(, and this
already implies MePC, (see e.g. [4]).

THEOREM 3.4. Neither the class Lpo nor Lgy is elementary. Moreover,
LyogPCyy LpodPCyy Lycd @Oy Lpeé QCs, SLyed UCy, and FSLpod¢ UC,.

Proof. Indeed, for every m << §,, the lattice ©(m) belongs to all
considered classes but it does not belong to those classes for m > N,.
Thus suppositions of Lemma 3.3 are satisfied and 3.4 follows..

TuroreM 3.5. The class H of all lattices which are Hausdorff spaces
in their interval topology is not elementary. Moreover, H¢QC, and H¢ PC ,.

Proof. It is easy to see that S(m)e H for m < 8, and S(m)¢ H¢ YH
for m > N8, and thus 3.5 follows by Lemma 3.3.

THEOREM 3.6. The class Z of all complete lattices which are Hausdorff
compact spaces in their interval topology is not elementary relatively to the
class C of all complete lattices, i.e., Z ¢ FC,(C). Moreover Z ¢ QU ,(C), Z ¢ PC 4(C)
and SZ¢UC,(C).

Proof. This follows from Lemma 3.3, since S(m)eZ ~ C for
m << Ry, but S(m)e C\Z and S(m)e O\ SZ for m = §,.

ExAmpLE 3.7. The lattice

B=( @ Sn)dS(0)

0<n<R
has the following properties:
(i) B is complete;
(ii) B with the interval topology is a compact Hausdorff space;
(iii) both ~ and < are continuous in the interval topology of B;
(iv) no non-trivial countable ultrapower of B is in L.
The properties (i)-(iil) are easy to verify. Let us show (iv). It is
visible that if 2 is a non-principal ultrafilter over o, then P,_,S(n)/2

is isomorphic with a sublattice of B?/2. But as we know P,_,S(n)/Z
is ‘isomorphic with &(2%) and hence (iv) follows by 2.7.
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From this Example we obtain at once the following result which
is a solution of a problem from [5]:

THEOREM 3.8. INLypgé¢ EC, and LN\Lgod HC,.
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