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The so-called Kroneckerian sets play a significant role in the har-
monic analysis. A compact set Z in a locally compact abelian group is
Kroneckerian if every continuous function ¢ on Z of absolute value 1 can
be approximated by single continuous characters, i.e. if for an arbitrary
¢ > 0 there is a character y such that |p(t)—x(f)| <e on Z. Is Z = {t;}
(1 <7 < m) a finite set, then Z is Kroneckerian if and only if it is inde-
pendent, i.e. iff

fkit,; == if)
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with integer ks is impossible unless %, = ... =k, = 0 ([10], p. 98).
For the group of integers and for euclidean spaces this is a part of the
classical theorem of Kronecker; for other groups it follows from an ab-
stract form of Kronecker’s theorem, as proved by Hewitt and Zucker-
man ([4]; see also [1]). Obviously, a Kronecker set is always independent.
It has been proved ([10], p. 100) that a compact abelian group, having
an element of infinite order in every neighbourhood of the identity,
contains an infinite Kroneckerian set, actually one which is homeomorphic
to the Cantor ternary set. However, apparently no attention was paid
up to the present to the existence of sets of Kronecker’s type which are
not compact but rather “dispersed” over a whole non-compact group,
so that the prescribed function ¢ in the definition is automatically con-
tinuous. This is a special case of a more general situation as covered by
the notion we intend to introduce now.

Definition. A set ¥ in a locally compact abelian group G is called
ultra- Kroneckerian (UK) if for every function ¢ of absolute value 1 and
for every & > 0 there is a continuous character y of G such that

lp(t)—x(t)| < e for teH.
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1t is obvious that for a finite set to be Kroneckerian (or, equivalently,
independent) and to be UK means the same and that a compact infinite
set is never UK. Further,

(i) UK-sets do not contain non-trivial convergent sequences.

In particular, in metric compact groups there are no infinite UK-sets.

This follows from the fact that every function ¢ on a UK-set with
lg| = 1 is extendable to a continuous function over , this being im-
possible if the set contains a sequence {t;} of distinet elements with #; — ¢ e,
since one could then assume ¢(ty,) = —1, ¢(ty) = 1.

A set F in a locally compact abelian group @ is called an I ,-set if
every bounded function defined on K dan be extended to an almost
periodic function over G [2]. It is easy to see that

(ii) every UK-set is an I -sel.

In fact, in order that a set be I, it is enough that every two-valued
function on it can be extended to an almost periodic function [2]. This
is just the case with a UK-set F, because for a function ¢ on B with
lg| = 1 we can find a sequence {y,} of characters of ¢ with lim unif y, = ¢
on E, then extend the 7,s to (continuous) characters of the Bohr com-
pactification G of G, thus getting a sequence of characters uniformly
convergent on the (weak) closure E of E in é, whose limit, if extended
over the whole of é, yields an almost periodic function on , equal to ¢
in the points of E.

Following these lines we state also

(iii) E is a UK-set in G iff it is an I \-set such that B is Kroneckerian
in G.

In fact, if B is UK, then for a (weakly) continuous function ¢ on B
with |p| = 1 we have lim unif y, = ¢ on ol provided the same holds on
F; hence F is Kroneckerian. Conversely, if K is I,, then we can extend
every bounded ¢ from F to-a continuous function on (:1, and |g| = 1 holds
on F if it holds on K. Thus, if B is Kroneckerian, there is a sequence of
characters such that lim unif y, = ¢ on E‘, and a fortiori on K, which
thus appears to be UK.

So, the investigation of I,-and related sets leads in a natural way
to UK-sets. Property I, implies by no means property UK, since an
I ,-set is not necessarily independent; e.g., on the real line

t
lim ! o

n n

is enough for the sequence {i,} to be an I,-set [11]. The proof of this
theorem is far from simple (yet being elementary); previous examples



ULTRA-KRONECKERIAN SETS 227

of I',-sets ([7] and [8]), though easier, required nevertheless some special
arithmetical constructions which do not seem appropriate for the theory
of almost periodic extensions, such as exposed in [2] and [3], where
the methods refer rather to topology and the theory of measure, making
use of arithmetics only indirectly and for the unique purpose of guaran-
teeing the existence of objects under consideration. In the sequel, we
shall show by very modest arithmetical means that infinite UK-sets
and thus infinite I ,-sets do exist on the real line and in some other groups.
So we shall be able to avoid special constructions where nothing but
an existence theorem is needed. This does not diminish the importance
of the results in [7], [8] and some other papers; they give much more
detailed information.

We still observe that if K is an I ,-set, then E is a Helson set [6],
i.e. a closed set such that every continuous funetlon on it is a restriction
of a Fourier transform, which means here an almost periodic function
with absolutely convergent Fourier series. It is known that a Kronecker
set is always a Helson set ([10], p. 116) and so we obtain a part of Kahane’s
result directly from (iii).

THEOREM 1. A sufficient condition for an increasing seqence of positive
numbers {t,} to be a UK-set is that t,’s be independent and that tatnin — 0.

Proof. We shall denote ¢ by e(a). If a,, @y, ... are arbitrary complex
numbers of absolute value 1 and & an arbitrary positive number, we must
tind a real 4 such that

(%) le(Atp) —an| <& for n=1,2,...
Put

1 1
Wy = (_+ +.-')tn_1.

fn tn+1
It is easily seen that limo)n = 0. Thus, for a given 4 > 0(4 < 1),

there is an m such that 2= w, < 0 for n > m. We shall represent the required
number in the form

A=At Om+Tmirt...,

where
27
0<o, <—  (n=m).
tn
The numbers ¢,,%,,...,%, ; being independent, there exists by

Kronecker’s theorem a /1, such that

(2) |e(Aptn) —an| < 6 for n < m.
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The values of z,(n > m) will be determined successively as follows:
We have

(o 0]

My = (Ag+Tn+Tpirt. .. +20)n+7atn, Where 1, = 2 x,.

y=n+1

From (1) we obtain 7,t, < 2nw, < . Hence

(3) |6(Mn) ”“anl < le((}“o +wvn+- . 'I“!'En) tn) _anl 7+ le(wntn) _1] ¢

If », for » < n are already fixed, we choose x, in such a way that
the first term on the right-hand side of (3) vanishes. Then

(4) le(My) —an| < |e(8)—1] for n =m.

On the other hand, for n < m we have it, = Agt,+7p_1ty, and, in
view of (1), 0 < Tp_1tn < Tm_1fm_1 < 2nwy, < 6. Thus, by (2) we get

(5) le(Atp) —om| < |e(Agtn) —an|+ |e(@ln) —1] < 04-Je(d) —1].

In view of (4) and (5) we have (x) for ¢ sufficiently small.

The authors were unable to decide whether there exists a charac-
terization of UK-sets on the line R as independent sequences which in-
crease rapidly enough. If it is so, is then perhaps t,.,/t, —> oo the ade-
quate condition? (P 570).

We can prove that ¢,.,/t, > 6 > 1 is not sufficient. In fact, if e.g.
t,—2" — 0, then {t,} is no UK-get. Here is the reason: the (weak) cluster

points of {t,} in R are the same as those of {2"}. But if » is such a point,
then 2z is too, because if xe{2"}, then 2z¢{2"}, and 2z is a continuous
function of x. Thus, the weak closure of {t,} is not independent, hence
it is no Kroneckerian set, and {#,} is no UK-set, by (iii). That it is an
I -set, follows from Strzelecki’s theorem in [11]. In the above reason-
ing the number 2 can visibly be replaced by any rational > 1. We do
not know whether it can be replaced by any real > 1 (P 371).
We show still one partial result pertaining to these problems:

TueoreM 2. If {t,} is a UK-set, then {t,.,—t.} is a UK-set, too,

Proof. For a given sequence {a,} (|a,] = 1) we take f, so that
1Bul =1 and o, = Bpy1/Bn- It is easily seen that |e(Af,)—pf. < /2 (n
=1,2,...) implies |e(A(fy;;—1ts)) —0n| < & which ends the proof.

From Theorem 2 it follows that for every UK-set {f,} one has
lim (t,,,—t,) = oco. In fact, otherwise the UK-set {t,,,—t,} wouldconta in

a convergent sequence against (i).

Now we pass to UK-gets groups different from the real line. Firstly,
let us remark that if a discrete abelian group G is of infinite rank, then
it contains an infinite UK-set. In fact, every independent set I in
is UK, since every function f on F with |f| = 1 can be extended to a cha-
racter. We pass to compact groups.



ULTRA-KRONECKERIAN SETS 229

THEOREM 3. If G is a compact abelian group of topological dimension
= 280 then it contains an infinite UK -set.

Proof. The character group @ contains =2% independent elements
(see e.g. [9], p. 263); consequently, it contains the direct sum of 2%
copies of the group of integers. Hence there exists a homomorphism &

of G onto the cartesian product P of 2% copies of the circle group. This
product contains the Bohr compactification R of the real line. Let Z
denote an infinite UK-set in R (the existence of such a set follows from

Theorem 1). A UK-set in R is also UK in P, since every character of
R can be extended to a character of P. If we choose one point from every
coset h'(p) (peZ), we get visibly an infinite UK-set in @.

If ¥ is an I ,set in a locally compact abelian group , then the

weak closure ¥ in the Bohr compactification @ of G is of Haar measure
0 [3]. Yet we do not know whether F can generate (algebraically) the

group @ (P 572). If not, this would be apparently a stronger result for ¢
connected. It can be 1mmediately proved for UK-sets, since their clo-

sures in G are Kroneckerian, hence independent, and @ being a com-
pact group has no basis (i.e. is not free abelian; see e.g. [5]).

REFERENCES

[11 S. Hartman et C. Ryll-Nardzewski, Théorémes abstrails de Kronecker
et les fonctions presque-périodiques, Studia Mathematica 13 (1953), p. 296-310.

[2] — Almost periodic extensions of functions, Colloquium Mathematicum 12
(1964), p. 23-39.

[3] — Almost periodic extensions of functions II, ibidem 15 (1966), p. 79-86.

[4] E. Hewitt and H.S. Zuckerman, A group-theoretic method in approxi-
mation theory, Annals of Mathematics 52 (1950), p. 557-567.

[6] A. Hulanicki, Algebraic structure of compact abelian groups, Bulletin de
I’Académie Polonaise des Sciences, Série math., astr. et phys., 6 (1958), p. 7T1-73.

[6] J.-P. Kahane, Ensembles de Eyll-Nardzewski el ensembles de Helson, Collo-
quium Mathematicum 15 (1966), p. 87-92.

[7] J.S. Lipinski, Sur un probléme de E. Marczewski concernant les fonctions
peériodiques, Bulletin de 1’Académie Polonaise des Sciences, Série math., astr. et
phys., 8 (1960), p. 695-697.

[8] J. Mycielski, On a problem of interpolation by periodic functions, Collo-
quium Mathematicum 8 (1961), p. 95-97.

[9] J.C. llourparun, Henpepwsenwe epynnw, MockBa 1954.

[10] W. Rudin, Fourier analysis on groups, New York - London 1962.

[11] E. Strzelecki, On a preblem of interpolation by periodic and almost periodic
functions, Colloquinm Mathematicum 11 (1963), p. 91-99.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 26. 4. 1966



