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In this communication®, a general existence theorem is given which
essentially is not new, but is meant to unify different existence theorems
of General Algebra — like the existence theorem of Birkhoff [1] for free
algebras in primitive classes of full algebras, like various existence theorems
for “free products” of full algebras — and to extend them as far as
possible within purely algebraic patterns. It contains as a special case
the most comprehensive algebraic existence theorem given so far, the
existence theorem of Slominski [25] for the “free” (universal) homo-
morphism of a given partial algebra 4 into an algebra belonging to a
given primitive class B of full algebras. As Slomiriski has already shown,
it is useful to consider partial algebras even if one is mainly concerned
with full algebras. So it seems natural to ask for a more symmetric gene-
ralization of Slominski’s theorem that admits partial algebras to class B
too. This will only be possible by a complete change of proof, since
Stominiski’s proof makes essential use of congruence relations in certain
full algebras, i. e. sets of equations for full algebras. As a matter of fact,
our proof is obtained by careful reexamination — from the view point
of partial algebras — of the original proof of Birkhoff’s existence theorem
quoted above, running nearly completely along category theoretical
lines.

In fact, from the view point of a more general theory of abstract
structures (including partial algebras as a special case), as well as from
the view point of abstract categories, further generalizations of our
algebraic existence theorem are possible and well known. Nevertheless,
General Algebra — the necessity of which will not be discussed at
a conference on General Algebra — undeniably demands a general

* Presented to the Conference on General Algebra, held in Warsaw, September
7-11, 1964.



74 J. SCHMIDT

existence theorem within its own purely algebraic domain, interesting
for its own sake, which avoids the great — not to say ugly — compli-
cations of a general notion of abstract “structures” as given by Bourbaki
[3], and makes unlimited use of such algebraic notions that cannot
immediately be translated into the language of a single abstract category
or of functors between abstract categories.

Hence, being thorough aware of the features of more and most
abstract categories, we voluntarily limit ourselves to the relatively
concrete category of partial algebras of a certain type which enables
us to make use of its special non-categorical features as often we want
to for comfort’s sake. The result, in any case, is an extremely general
algebraic theorem that may be considered satisfying in itself because
of the wide extend of its immediate and important special cases. A theorem
of this kind ought to be contained in any future text book or monograph
on General Algebra.

1. Generalities on partial algebras. Let A, i be arbitrary sets. A sequen-
ce of type K in A is a mapping a= (a,),.x: K -4, i. e. an element aeA*.
A (partial) operation of type K in A is a mapping f: D = A¥ - 4, i.e.
an element feA”, where its domain D is some set of sequences of type K;
applying operation f to some sequence a = (a,).xeD. we may write

fla) = fla,|xeK)

or something like that. In the special case D — AX, fis a full operation.
In the opposite extreme case D = @, f is the empty operation (of type K),
which will be very useful in the sequel. The general case of a partial
operation of type K then lies between these two extremes. In the special
case of type K = @ however, there really are no further partial operations
of this type; for one has one and only one sequence of type K = O, the
empty sequence 0, A® = {0}, hence only D = {o}, i. e. the full operations f
of type O, corresponding one-one to and usually identified with the
elements a = f(0)e 4, then named constants, and D = 0, i. e. the empty
operation of type O, are possible.

Let I be another set, the inder set, A = (K;);; a family of sets,
the type. A family (f;),; of operations f; of types K; in A will be called
a (partial) algebraic siructure of type A in A, the couple (4, (f;)i) is a
(partial) algebra of type A, with fundamenial set A, fundamental opera-
tions f;. An algebraic structure, an algebra is full if so are all fundamental
operations. Having in mind a definite algebraic structure (f;);,, we often
speak of “algebra A” instead of “algebra (4, (fi).:)”’, being well aware
of possible misunderstandings which ocecasionally have to be avoided
by careful discussion.
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A homomorphism of algebra (A, (f;)iz) into algebra (B, (¢g:)ig) —
both of the same type, i. e. simélar — is a mapping ¢ : A - B such that

(1) o(fila,)xeKy)) = gilp(a,) | xe Ky

for all sequences a = (a,).x, in the domain of f;, i.e. such that
fila,|xek;), hence the left side of (1) exists: then the right side of (1)
is meant to exist according to definition of homomorphisms.

One sometimes has to consider two similar algebraic structures
(fi)ir and (g:)ir in set A. Then (f;).; is weaker or poorer than (g;)ir,
(g:)icz Stronger or richer than (f;);; if, for each index iel, f;: D; = A% > 4
is a restriction of g;: B; < A% ~ 4, i.e. if and only if the identical
mapping id,: A — A is a homomorphism of algebra (4, (f;)i;) into
algebra (4, (¢)i7). The “weaker-stronger”-terminology being an obvious
analogue of the terminology introduced by Alexandroff and Hopf for the
comparison of topologies ('), the “poorer-richer”-terminology reminds one
of the possibility that, for instance, all operations g; may be full, some of
them coinciding with the operations f;, while the remaining restricted
operations may be empty: so in the poorer structure (f;).;, there may
be less fundamental operations “that really matter” than in the richer
structure (¢;);.r, yet for practical reasons, both formally are of the
same type A.

It will be even useful to consider the extreme case of the weakest,
poorest, or discrete algebraic structure of type A in A all fundamental
operations of which are empty; hence, any abstract set A may be considered
as discrete algebra of prescribed type A. If set A is of cardinal number
|A| = 2, there is no strongest algebraic structure of type 4 in 4, but
the full structures are precisely those which cannot be strengthened,
i. e. the maximal elements of the ordered set of algebraic structures of
type 4 in A. In a one-element set A however, the strongest or richest
algebraic structure of type 4 exists and is full; these full one-element
algebras of type A play a special role in our considerations by the fact
that these are precisely those partial algebras 4 of type A such that
for each partial algebra B of type A there is one and only homomorphism
¢: B> 4,1 e. In the category of all partial algebras of type 4 together
with all homomorphisms, the full one-element algebras are precisely
the objects called “right zero objects” by Isbell ([10], p. 25). Let us
finally note that in the empty set 4 = ©, the only algebraic structure
of type A is the discrete one, which is to be considered full if and
only it type A is without constants, i. e. all sets K; are non-empty; this
empty algebra of type A is the only partial algebra of type 4 such that

(!) The topological terminology of Bourbaki, “finer” and “coarser” (moins
fin), does not appear so suitable here.
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for each partial algebra B of type 4 there exists at least one homomorphism
¢ : A — B, which then is unique, namely the empty homomorphism,
i. e. the empty algebra is the only “left zero object” (even in a very strong
sense) in the category of all partial algebras of type A.

2. Relative algebras, direct products, partial direct sums. This com-
parison of algebraic structures can be used to define the standard
concepts of subalgebras, direct products, ete.

Firgt, let B be an arbitrary subset of algebra (A, (fidir) (i. €. of its
fundamental set A). Then there exists the strongest algebraic structure
(9:)icr o0 B such that the inclusion mapping i : B —~ 4 is a homomorphism,
g:; being the restriction

(2) g; = fi ~ (B%ix B).

(B, ()it} 18 the velative algebra of algebra (A, (fi)ii) associated with
subset B, which one usually identifies (“par abus de langage”) with
subset B itself, its relative algebraic structure (g;);; being an obvious
analogue of relative topology; besides, algebra (4, (f;).s) is often called
an extension of relative algebra (B, (g,;),id). Beyond its definition, one
has the following stronger property of this relative algebra: let (C, (h;)i)
be an arbitrary similar algebra, let ¢ be an arbitrary mapping of set €
into subset B = A, then ¢ is a homomorphism of algebra (C, (k)i
into relative algebra (B, (9:)icz) if and only if i-¢ (= ¢) is a homomorphism
from (0, (;);7) into algebra (4, (fi)ii)-

If, in particular, B is a closed subset, f;(B*i) < B for each index
“iel, then this relative algebra on B or subset B itself is usually called
a subalgebra (%). It is easy to see that a partial algebra (B, (¢:)iez) is full
if and only if it is a subalgebra of, i. e. closed in each extension (4, (fi)ii)-

For an arbitrary subset M (possibly empty) of algebra (A, ( fi)M),
there exists the least subalgebra containing M, the subalgebra generated
by M (closed hull, closure of M), CM = M. As an important clue, we
state

THEOREM 1. For any cardinal number m, there is a cardinal number m
such that, for each partial algebra B of type A generated by a set M of cardinal
number | M| < m,

(3) B| = |H| <.

It is in the proof of this theorem that a greater or less portion of
pure set theory, i. e. non-algebraic arguments come into General Algebra.
For the proof of Theorem 1 (which we do not intend to give here),
there are two main possibilities. If one wants a more algebraic proof,

(*) In topology, “relative space” and “subspace” have the same meaning.
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one has to construct a very special full algebra (4, ( f@)m) of type 4
generated by a set 3, of exact power m, in which the following Gene-
ralized Peano Axioms hold true:

P1. fi(a)¢ M,, for any index i<l and any sequence aeAfi;

P2. f;(a) = f;(b) implies ¢ —j and a = b, for any i,jel,acd}’,
beds,

(As a matter of fact, together with the Awiom of “complete” or
Algebraic Induction),

P3. M; = Ay;
these axioms constitute an obvious generalization of the classical Peano
axioms for natural numbers.) Thus having secured the existence of this
Peano algebra of type A generated by M, (*) one shows that M, is an abso-
lutely free or absolutely independent subset, i. e. that any mapping (“val-
nation”) g of M, into a full algebra B of type A can be — necessarily
uniquely — extended to a homomorphism ¢ of algebra M, = 4, into
algebra B : ¢ is nothing but the subalgebra of the direct product 4,x B
generated by f$,¢ = B (*). By this latter generalization of the classical
Recursion Theorem securing the existence of recursively defined functions
of natural numbers, choosing m = |4,], we first obtain (3) for full
algebras B, then, by a simple additional argument, for arbitrary partial
algebras B. This more algebraic proof of Theorem 1 has the obvious
advantage of making the upper bound m in inequality (3) exact, still
it does not give an arithmetical formula for this exact m, On the other
hand, not minding a more set-theoretical proof, one may obtain,
for an arbitrary partial algebra, a deeper insight into the construction
(“from below”, whereas its simple definition was “from above”) of sub-
algebra M by its usual stepwise exhaustion by the so-called Baire
or Borel classes, beginning with the generating subset M itself as the
class of rank zero, and running through all ordinal rank numbers up to
a certain ordinal dimension number associated with type A4; with the

(®) Intuitive descriptions of this Peano algebra have been given by Shoda [20],
§3, [21], §4, and by Dérge [6]. For an analogous exact recursive construction, cf.
e. g. Slominski [24], chap. III (1.1). In the case of finitary fundamental operations,
another recursive construction follows the lines of metamathematics, namely the usual
recursive definition of well-formed formulas of a formal language without brackets
(Lukasiewicz) ; here the proofs of P1 and P2 become more complicated, using balance
criterions for well-formed formulas as given by Gerneth and Bourbaki. Just recently,
the shortest possible, a very direct construction of Peano algebras — which does no
longer use any recursion — has been discovered by Kerkhoff [12].

(4) This nice algebraic formulation and proof of the Recursion Theorem goes
back to Lorenzen, and has been extended to arbitrary Peano algebras by Diener
(this volume, p. 63-72) and the author. The proof given by Slominski [24], chap. III,
(1.3), is false. P o
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help of transfinite induction on these rank numbers, one obtains a more
or less exact arithmetical expression for our upper bound m (5). Let us
note that, for our purpose, only the existence of upper bound m is needed,
not its best possible value; this may serve to simplify the second sort
of proof.

Continuing the definitions of standard concepts, we consider a family
of algebras (At, ( fgi).,;d) (teT). Let A = PA; be the usual direct product
of sets A;. Then there exists the strongest algebraic structure (f;);y on A
such that all natural projections ps: 4 — 4; — defined by p.i(a) = a(t)
for all e A — are homomorphisms, product operation f; being defined by

(4) plfila,|%e Ky)) = fu(pi(a,) | xeK,),

where the argument on the left side exists if and only if so does the right
side for all te7'. From the view point of categories, this direct product
(4, (f)ix) of algebras (Asy (fu)ia), an analogue of the weak product of
topological spaces, has the property (generalizing a part of the definition):
for each partial algebra B of type 4 and for each (“coinitial”) family
of homomorphisms ¢,: B — 4, (teT), there is one and only one homo-
morphism ¢ : B ~ A such that p;-¢ = ¢, for all teT, i. e. the family
of diagrams

can be filled in by a unique ¢ (not depending on index t) to make then:
all commutative. This property of algebra A together with the family
of homomorphisms p; can be considered as an axiomatic definition of
abstract divect product (which is unique up to — unique — isomorphism);
the above construction of a concrete direct product may be considered as
the proof of existence of direct products in the entire category of partial
algebras of type 4.

In the sequel, it will be comfortable to admit the empty family of
algebras A;, i. e. T = @. The direct product A of sets A; then consists
of precisely one element, the empty choice function, and our general
definition of product algebra turns this particular one-element set A
into the corresponding full algebra of type A; this will be the concrete
direct product of the empty family of algebras of type A. More generally,

(%) Proofs of this kind have been given by Stominski [24], chap. 11, § 4, Chris-
tensen-Pierce [5], lemma 1.1, and the author [18].
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the abstract direct products of the empty family will be all full one-element
algebras of type 4 (which are the isomorphic copies of the particular
full one-element algebra considered above), i. e. the right zero objects
in the category of partial algebras of type A.

Still in this category, as is not so well known, the dual of direct
products exists. Let us again consider an arbitrary family of algebras
(Ae, (fu)ir) (1eT). Let A =S 4, be the direct sum of sets A, as intro-
duced by Whitehead and Russell,

S Ay = {(t, a)lteT, acds),
eT

which is used for the definition of addition of cardinal numbers by means
of arbitrary representative sets A, as the direct product P4, is used
for multiplication. Then there exists the weakest algebraic structure
(fidiz on 4 such that all natural injections ¢ : A;-> A — defined by
i(a) = (t, @) — are homomorphisms, sum operation f; being defined by

(5) filica,) | % e Ky) = io(fui(a,|xeKy),

where, for any teT', the left side exists if and only if so does the right
one, which, in particular, means that f; only operates on such sequences
all members (,, a,) of which belong to the same index ¢, = teT, i. e.
to the same equivalence class #;(A4;) = {t}x A; of direct sum A. Again,
this partial direct sum (A, (f;)iq) of algebras (Aq, (fu)ia) (°) an analogue
of the “topological” sum of topological spaces, has the property (gene-
ralizing a part of the definition): for each partial algebra B of type 4
and for each (“coterminal”, “cofinal”) family of homomorphisms ¢;:
Ay — B (teT), there is one and only one homomorphism ¢ : A - B such
that ¢« 4; = ¢ for all teT, i. e. the family of diagrams
¢
2 S A
bN A

IR i
Ay
can be filled in by a unique ¢ (not depending on index t) to make them
all commutative. This property of algebra A4 together with the family
of homomorphisms ; can be considered as the axiomatic definition of
abstract direct sum (which is unique up to — unique — isomorphism)
in the category of all partial algebras of type 4, which exists due to the
above unlimited construction of a concrete direct sum. (Let us note that

(%) The partial direct sum has been introduced by Stominski [25], p. 30, under
the name “direct sum”; it has been dizcovered independently by the author.
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one very often limits oneself to the special case of pairwise disjoint
summands 4, as has been done by Cantor and repeated again and again;
in this case, one usually replaces the general construction of Whitehead
and Russell by taking as set A the ordinary union of sets 4,, as mappings
i¢: Ay — A the ordinary inclusion mappings.)

It is clear that the partial direct sum of the empty family of algebras
is the empty algebra of type 4, i. e. the only left zero object in the category
of partial algebras of type 4.

3. The Main Theorem. The trouble with this partial direct sum is
that it is not full even if so are all summands 4,: the class of full algebras
is not closed with respect to partial direct sums as it is with respect to
direct products. Still, this evil will be soon remedied by our announced
General Existence Theorem:

THEOREM 2. Let A be an arbitrary partial algebra of type A, let B
be a quasi-primitive class of partial algebras of the same type A, i. e.

(i) B is closed with respect to direct products,
(ii) B is closed with respect to (closed) subalgebras,
(iii) B is closed with respect to isomorphic images.

Then there exists an algebra ByeB and a homomorphism ¢,: A —~ B,
such that, for each algebra CeB and each homomorphism y: A — C, there
is one and only.one homomorphism y: B, — C such that y = v g, (7).

That is: each diagram

B = ¢
N A

AN //
‘Po\ / X
A

(CeB) can be filled in by a unique v to make it commutative.

Let us note that one may combine properties (i) and (iii) by saying
that class B shall be closed with respect to abstract direct products in
the sense given above, i. e. with respect to isomorphic copies of the con-
crete direct product. On the other side, very frequently a condition
stronger than (iii) holds, which does not admit a nice combination with (i),
namely (iii’) that B is closed with respect to all homomorphic images,

(") For a more general theorem on sets with arbitrary abstract structures cf.
Bourbaki [3], CST 22, p. 44. Mr. Peter Freyd has kindly informed me that Theorem 2
will be contained as a special case of a simple exercise on abstract categories in his
forthcoming book on categories.
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which turns the quasi-primitive class B into a primitive elass: this is the
hypothesis of Slominski [25], Theorem 7.

Moreover, Slominski assumes B to be a class of full algebras. In this
special case, one may construect the algebra B, of our theorem as a factor
algebra A,/R of the Peano algebra 4, of type A (generated by a big
enough set M,) modulo a suitable congruence relation R (the set of all
“A,-equations holding in algebra 4 as well as in class B” as defined
below): this is Slominski’s proof. But if B is a class of arbitrary partial
algebras, no longer can our algebra B, be expected to be full, nor a homo-
morphic image of a Peano algebra 4, (which would be full): extending
Stominski’s theorem for a primitive class of full algebras to a quasi-
primitive class of partial algebras, we need a completely different proof.

Let us finally remark that, in any case, class B contains some full
algebras, since according to our convention on the empty family,
conditions (i) and (iii) imply that all full one-element algebras of type A
belong to B. By the latter statement, we even become sure of the exis-
tence of an algebra Be¢B and a homomorphism ¢ : A — B; as a matter
of fact, without this convention (or — if one prefers — additional hypo-
thesis), our theorem would become false (2). So we come to the

Proof of Theorem 2. Due to Theorem 1, there is a cardinal
number m such that [B| < m for all partial algebras B generated by sets M
of cardinal number |M| < |A|. Let E be an abstract set of power
|E| > m. Let us first consider an algebra B such that B < E, and the
family of algebras B; = B, where 1 runs through all homomorphisms
A: A — B, i. e. through set Hom (4, B); its direct product is the direct
power BE™AB) | with the natural projections p,: BE™.B . p _ g
According to the category property of direet products, there is one and
only one homomorphism ¢z: A > BE™E) queh that p, - gz = 2 for
all ZeHom(4, B)(°). Next, let us consider the family of algebras
BHomAE) such that BeB, B < H, and its direct product PBHO™AB)
with the natural projections g¢p: PBHO™E) . pHom(d.B) - Again  there
is one and only one homomorphism ¢: A4 — PBH™B) gueh  that

qp 9 = ¢p for all BeB, Bc K. Let B, = ¢A be the subalgebra of
PBR™MAE)  generated by the image of ¢, let i: B, > PBE®MAB pe
the inclusion homomorphism; then ¢ :may be considered as a homo-
morphism ¢, : A — B,, more precisely: due to the general property of

(8) This is shown by the simple example given by Mr. Peter Freyd: A a non-
discrete algebra, B the class of all discrete algebras (of the same type as A!); ag a mat-
ter of fact, this class B only fulfills condition (i) with respect to direct products of
non-empty families.

(*) ¢p is the canonical homomorphism of 4 into BHOmM(4.B) a5 considered —
in the special case of full algebras — in [17], (6).

Colloquium Mathematicum XIiV 6
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relative algebras discussed above, there is one and only one homo-
morphism ¢,: A — B, such that ¢ - ¢, = ¢.

Due to (i) and (ii), B,e3B. Let ¢ be an arbitrary algebra belonging
to class B, let y: A — C be an arbitrary homomorphism. Because of
B, = ¢,A, there is at most one homomorphism y: B, — (' such that
x =y - p,. We have to show the existence of . This is done by “chasing
the diagram?”:

¢
//’ LN .
v
S—— / Xo Yo ——
A = Cy<— A - —~B, = ¢pA
I Ne
o) ) g (pB \\ :’ 1
v ! N v
B,a — B« BI{Om(A,B)é______PBIiOm(A»B)
V! an

Let Oy = yA be the subalgebra of ¢ generated by the image of y,
let j:Cy— C be the inclusion homomorphism; again y may be con-
sidered as a homomorphism y,: 4 — 0y, i. e. j -y, = . But |yA| < |A4],
hence |C)| < m < |E|; there is a bijection w: 0, - B < K, and set B
may be turned into a partial algebra of type 4 such that o becomes an
isomorphism. Due to (ii) and (iii), BeB. We define the homomorphism
A=w-y:4—-B. Then py =j-w1-p,-qg-i: B, > C is the homo-
morphism we want, for

Y po =) 0P i@y =J 0 pigpg = jropep

= ot h =g = 7,

q. e d.
Let us remark that algebra B, together with homomorphism ¢, :
A — B, is unique up to — unique — isomorphism.

From the universality property of this unique ¢,: 4 — B,, it follows
that R, , the equivalence relation (in fact a congruence relation) induced
by ¢y, is the least among all equivalence relations R, induced by homo-
morphisms y: A4 > CeB,

(6) R,—=N () R,

CeB xeHom(A4.C)

Defining
( 7) RC' — m Rz

yeHom(.4.C)
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as the set of all A-equations of partial algebra C (), we also obtain

(8) Rwo =By = Ry,

CeB
1. e. R, equals the set of all A-equations of class B. Moreover, R, = Ry
€ Ry, € Ry, hence Ry = Ry: extending the notion introduced by Tarski
for full algebras, partial algebra B, is A-functionally or A-equationally
free in B. : ,

Due to (6), ¢, is injective, R,, = (MM R, cidy, if and only if
AxAd—idy,c UU (AxXA—R), i.e. if and only if for each couple
of different elements x,yed, there is an algebra (¢B and a homo-
morphism y : A — C such that y(x) # y(y) (*1). Or ®o 18 injective if and only
if there is an algebra C'«B and an injective homomorphism y: 4 — C (*2).
If @, is injective, it is not an isomorphism of algebra A onto relative
algebra ¢,4 = B, in general, as is shown below by example (13).

4. Some special cases. We are going to discuss some typical special
cases.

First, let algebra A be discrete, i. e. an abstract set. Then each
mapping y of set A into an arbitrary algebra ¢ is a homomorphism. We
- conclude that subset ¢, 4 < B, is B-free or B-independent, i. e. O-free
or C-independent for each algebra (¢, i.e. each mapping v : p,d —~ O
can be extended to a — necessarily unique - homomorphism v : B,
= @A — C. If moreover class B is nontrivial, i. e. contains an algebra B
of cardinal number |B| > 2, ¢, is injective by the criterion given above.
We obtain the existence of an algebra B,eB, B-freely generated by a
subset of prescribed cardinal number [4|, for any nontrivial quasi-
primitive class B of arbitrary partial algebras. In the special case con-
sidered by Stominski [25], this is the famous existence theorem of Birk-
hotf [1] for free algebras in a non-trivial primitive class B of full

(1%) Tarski was the first to define an equation as a couple of algebraic operations
(functions); Slominski [24], chap. ITI, § 3, then defined an equation as a couple of
elements of a Peano algebra A. In [16], A was admitted to be an arbitrary free full
algebra, in [17], a completely arbitrary full algebra; here the congruence relations
E¢ are precisely the superinvariant (“liberinvariante”) congruence relations of A,
which coincide with the fully invariant congruence relations if A is free.

(1) Cf. Bourbaki [3], CST 23, p. 45; cf. also Shoda [20], § 5, [21], §4.

(%) E. g., this trivial injectivity criterion is used by Chevalley [4], p. 42.

(*3) Slominski [25], § 2, discusses conditions for ®o + 4 — B, to be an embedding.
An important general embedding criterion in the case of finitary operations (all sets
Ky finite) has been given by Neumann [13], theorem 4, [14], theorem 33, the latter
proof making use of Steenrod’s theorem on the inverse limit of compact spaces.
Gritzer-Schmidt [8], chap. I, § 2, give a description of the embedding pg : A = By
in the case B is the class (“species™) of all full algebras of finitary type.
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algebras (14); as a matter of fact, the proof given above — as well as the
proof of the still more general theorem of Bourbaki [3] on sets with
structures — follows the lines of Birkhoff’s original proof. Mind that
the injective mapping ¢, is not an isomorphism, i. e. the B-independent
generating subset ¢, A < B, is not discrete in its relative algebraic struc-
ture in general, even if B is a class of full algebras (e. g. let B be the class
of semi-lattices); so it might become dangerous to “identify” the elements
of the discrete algebra A4 with their images ¢,(a), which are elements
of the possibly non-discrete relative algebra ¢,A4.

Second, let us consider the special case that algebra A is full. Then
its homomorphic image ¢, 4 is full, hence a closed subset of partial
algebra B, hence B, = g, 4, ¢, is surjective, B, really full. Using the
homomorphism theorem for full algebras, B, is isomorphic to factor
algebra A /R, ; by (8) and property (iii), we obtain A[RyeB, a state-
ment which — in the special case that B is a primitive class of full
algebras — used to play a key réle in Birkhoff’s famous theory of
equationally definable classes (15).

Third, as the typical example for 4 to be neither discrete nor full:
let B be the class of groups considered as full algebras with multiplication,
inversion, and unit element ‘as fundamental operations, i.e. as full
algebras of type A = (2,1, 0); let 4 be a semi-group, considered as a
partial algebra of type (2,1, 0), with multiplication as full fundamental
operation of type 2, the other fundamental operations of types 1 and 0
being empty. The interested reader is asked to study the method of proof
for the existence of this “universal” or “quotient” group B, — some-
times, in particular in the abelian case, called the Grothendieck group —
of an arbitrary semi-group A4 as used by Chevalley (1¢), this method
really belongs to General Algebra, for it may be extended at least to
arbitrary primitive classes B of full algebras, and it may be described
as a reduction of the general form of Theorem 2, for completely arbitrary
partial algebras A, to the classical special case that A is diserete, 1. e.
to Birkhoff’s existence theorem for free algebras.

5. Direct sums on quasi-primitive classes. There is an easy extension
of Theorem 2 to a whole family of partial algebras A, (teT) instead of
a single algebra A:

THEOREM 3. Let (A))wp be a family of partial algebras of type A,

(14) The author has been unable to find its generalization to arbitrary partial
algebras in literature.

(15) Cf. e.g. [17], corollary of theorem 25.

(16) Chevalley [4], p. 41, theorem 20. Cf. also Shoda [20], § 5, [21], §4; Pere-
mans [15], lemma 1.
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let B be a quasi-primitive class of partial algebras of type A. Then there is
an algebra B,eB and a family of homomorphisms ¢ : A; — B, such that,
for any algebra C'eB and any (“coterminal”) family of homomorphisms x;:
Ay — C, there is one and only one homomorphism v : By — C such that
st = Y@ fOT all tel.

I. e. the family of diagrams

can be filled in by a unique y (not depending on index ¢) to make them
all commutative.

For the proof, one passes from family (4,).r to its partial direct
sum A with injections #,: 4; > A, and, using the category property
of the partial direct sum, applies Theorem 2. In the special case that B
consists of full algebras, this method of reduction of the general Theorem 3
to its special case Theorem 2 by means of the partial direct sum has
been used by Stominski [25], Theorem (3.5) (7).

If all summands 4; belong to class B, algebra B, may be called the
B-direct sum of (partial) algebras A4,

B, = %S A,.

teT

In the case of abelian groups, this is the ordinary direct sum, in the
case of arbitrary groups, the free product. These two well-known examples
show how the notion of “direct sum” depends on class B. In case B is
the whole class of partial algebras of type 4, we get back our original
partial direct sum (%).

Yet there is a very nice example to show that it may be important

(17) Shoda [20], §4, [21], § 4, starts from an arbitrary common extension A
of algebras A¢, not telling the reader how to obtain it. Bourbaki [3], p. 50, ex. 3,
starts from the direct sum of sets A; without giving it an algebraic structure.

(18) Special cases of the B-direct sum have been considered by many authors,
most of them only admitting it if the homomorphisms ¢¢: A; — B, are embeddings;
cf. Shoda [20], § 4, [21], § 4; Sikorski [23], §§ 3,4 , in particular theorem (viii); Pere-
mans [15], theorem 2; Christensen-Pierce [5], theorem 1.5; Jénsson [11], § 1; Kerkhoff
[12] considers the case that B is the class of full algebras of type A. There is a frequent
interchange between the terms “product” and “sum”. Hewitt [9] gives a “dual”
of the theorem of Chrigtensen-Pierce, loe. eit.
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not to assume that all algebras A, belong to class B. Let family (A;)py
be reduced to a couple of algebras 4 and M, assume algebra A to belong
to class B, algebra M to be discrete, i. e. an abstract set (which may be
assumed to have no elements in common with set 4): then B, is the B-
polynomial extension of type M over A,

By = A[ My,

-

the elements of which may be called B-polynomials of type M over
A (*%). It is possible to generalize from classical ring theory to arbitrary
quasi-primitive classes B of full — if not partial — algebras the funda-
mental notions and propositions concerning polynomial extensions (29),
even the connection between B-polynomials of type M as defined above,
the “polynomial funetions” of Birkhoff, i. e. the elements of his “poly-
nomial algebra”

PY(4) ¢ 44 (m)

(the obvious generalization of “ganzrationale Funktionen”), and the
M-characteristic as defined by the author [16].
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