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1. Introduction. Throughout the paper X is assumed to be a Haus-
dorff space. By a hyperspace of X we shall mean any family §(X) con-
sisting of non-empty compact subsets of X provided with a topology.
Of particular importance will be the hyperspace Comp(X) consisting
of all non-empty compact subsets of X, the hyperspace C(X) consisting
of all non-empty and connected subsets (i.e., of all subcontinua) of X, and
in the case of X being metric, the hyperspace Conv(X) consisting of
all compact convex subsets of X — all three hyperspaces provided with
the Vietoris topology.

A base of the Vietoris topology in a hyperspace $(X) consists of all
sets of the form

(Uyyeeny Uy X))
={AeH(X): AU U;, ANnTU,; #0 for ¢ =1,2,...,n},
i=1 :

where U,, ..., U, are open in X and n» is any integer.

As is well known, if X is a metric space with a metric g, then a hyper-
space $(X) with the Vietoris topology can be metrized by the Hausdorff
dSTANCe (4, B) = max[supe(a, B), supe(4, b)]

. aeAd beB

An inverse system is a family X = {X,, ng, 27}, where X is a directed
set, X, is a topological space for each aeX, and n5: X, — X, is a conti-
nuous mapping for a > f. Moreover, n; =idy, and if a> y > f, then
ny W, = M.

A subset of the Cartesian product X X, consisting of all threads

aeX
of the inverse system X, i.e. of all elements {%,}..r such that =j(x,) = x;

for « > f, and provided with the product topology, is called the limit of
inverse system X (or, shortly, (inverse) limit of X) and is denoted by
lim{X,, n5, 2} (or, shortly, limX). Mapping n,;: limX — X, defined by
ntg({®,}) = @5 18 called a projection.
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If 2 is the set N of natural numbers, then an inverse system

{X,,fr, N} can be written simply in the form
X, XnelenH <~ ...
or, quite short, {X,, f,}.

Recall that if f: X — Y is a mapping and 4 < X, then f[A4] denotes
the set {f(a): aeA}, and if B = Y, then f~![B] is the set {f-1(d): beBj}.

Segal [9] has proved that if a metric continuum X is the limit of an
inverse system {X,, f,} of metric continua X, and continuous mappings
f., then the hyperspace C(X) with the Vietoris topology is the limit of
the inverse system {C (Xn),f"} of hyperspaces C(X,) with the Vietoris
topology and continuous mappings fn: C(X,;,) > C(X,) defined by
Ju(4) =f[A], AC(X,, ).

Recently, Sirota [10] has shown that if a compact Hausdorff space X
is the limit of an inverse system {X,, n5, 2} of compact Hausdorff spaces
X, and continuous mappings nz: X, — X,, then the hyperspace Comp (X)
with the Vietoris topology is the limit of the inverse system {Comp(X,),
n5, 2} of hyperspaces Comp(X,) with the Vietoris topology and conti-
nuous mappings z5: Comp(X,) - Comp(X,) defined by &;(A) = mg[4d],
A eComp (X,).

Both these results are particular cases of the more general Theorem 2
which is the main result of the present note.

The author is indebted to J. Michalski and W. Nitka for sugge-
stions which led to improvements of the original version of the note.

Notions and notation not defined in the note come from [4] and [5].

2. Convexity of inverse limits. In this section we shall find a necessary
and sufficient condition for convexity of the limit of an inverse system
of metric continua. This result will be then applied in Section 4 to yield
a corollary from Theorem 2.

Let {X,,f,} be an inverse system of metric spaces (X,, g,). If all
spaces (X,,, o,,) are bounded, then the limit lim{X,, f,} can be metrized
by the formula

[ ]

(1) 0({@a}, Wnd) = D) an* 0a(@n, ¥n),
n=1
where a, > 0 for each n = 1,2,..., and the series ) a,-4,(X,) is con-

n=1
vergent, §, denoting diameter in the space (X,, o,) (cf. [4], p. 178).

A metric space (X, g) is said to be convexr if for any two points a
and b of it there exists a point ce X which lies between a and b (i.e., such
that g(a,c)+ o(c,b) = g(a,bd)) and is distinet from both a and b. If
(X, o) is complete, then this is equivalent to say: for any two points a
and b of X there exists an arc in X between a and b isometric to the
real segment [0, o(a, b)] (cf. [7], p. 89).
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Let f: Z > X be a continuous mapping from a metric continuum 7
onto a metric continuum X. We say that f preserves convexity if it satis-
fies the following two conditions:

(i) if K = Z is a segment, then f[K] is a segment or a point,

(ii) if L < X is a segment or a point, then f-'[L] is convex.

Obviously, if Z is convex, then condition (i) implies convexity of X,
and if X is convex, then condition (ii) implies convexity of Z.

THEOREM 1. Let {X,,, f,} be an inverse system of metric continua (X,, 0,)
and mappings f,: X,,., > X, preserving convexity. Then the limit

(2) X = lim{X,, f.}

with the metric (1) is convex if and only if each continuum (X,, 0,) i
convex.

Moreover, each projection =m,: X — X, preserves convexity.

Proof. I. Assume first that all spaces (X,, o,,) are convex (in fact,
since all mappings f, satisfy (ii) by hypothesis, it suffices to assume in
this case convexity of (X,, o,) only).

Take two arbitrary threads, a = (a,, a,,...) and b = (b,, b,, ...),
of the limit (2). In order to prove its convexity it suffices to find a thread
x = (&y, s, ...) Which lies between a and b with respect to the metric (1)
and i8 distinet from both a and b.

Let k be a natural number such that a, # b,. Since the space (X, g,)
is convex by hypothesis, there exists a segment a, b, joining a, to b, in X,.
Let z;,, be a point of this segment distinet from both a, and b,.

If £>1, set

Tyo1 = Fr1(@i)y Bpeeg = Froma (@—1)y -0 0y 21 = f1(20).

Thus, for ¢ = 2,3,..., %, there is

(3) ;€ fi) (;_1)
and, by virtue of (i), for ¢ =1,2,..., %, we have
(4) . e(ay, 2;)+ o (@i, b) = e(a;, by).

Now proceed by induction. Assume that for some n >k we have
already defined a sequence x,, z,, ..., z, such that (3) holds if 2 <i < n
and (4) holds if 1 <7< n. In view of (ii), the set f,'[a,b,] is convex.
Since z, cuts a,b, between a, and b,, and f, is continuous by hypothesis,
[} (,) cuts f;'[a,b,] between any point of f, ' (a,) and any point of f,(b,).
In particular, f, '(x,) cuts each segment in f; '[a,b,] between a, ., and b, _,,
and by the convexity of f,'[a,b,] there is a segment in f; '[a,d,] between
a,,, and b, ,. Consequently, there exists a point @, ,¢f,'(2,) which lies
between a,_, and b, ,, i.e. (3) and (4) are satisfied also for n + 1. Induction
is completed.
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Hence there exists a thread z = («,, 2,, ...) such that (4) holds for
each n =1,2,... Since a, # x, # b, a # x # b. Multiplying now (4)
by a, and taking a series we receive

Zan ‘ en(a’n7 wn)+ Zan : Qn(mn’ bn) = Zan ' en(an’ b’n)’
n=1 n=1 . n=1

Le.,-
o(a, )+ o(z, b) = o(a, b).

II. Suppose now that the limit (2) with the metric (1) is convex. To
prove convexity of X,, where k¥ =1,2,..., take two distinet points
a,, bpeX;. Since all mappings f, are by hypothesis onto and all X, are
continua, hence compact, the limit X contains threads {a,}, {b,} through
a,, b, resp. (cf. [4], theorem 3.2.11). By the convexity of X, there exists
a segment S in X between {a,} and {b,}. Projection =n,: X — X,, being
continuous, maps § onto a continuum =,[S] which contains a;, and b,.
We proceed to show that each point of =, [S] lies between a, and b,. In
fact, if {x,} S, then

Zan : Qn(a'n’ wn)_*' Zan ' gn(wn’ b'n) = Zan ' Qn(a"n’ bn)!
n=1 n=1 n=1 -
whence, consequently,
(5) D) 0, {[ea(@y 2,) + 04 (@0 B)1— u (@, b)) = 0.
n=1

And since on the left-hand side of (5) there is a number series such
that, for each » =1, 2, ..., there is a, > 0 and, by the triangle inequality,

Qn(a’n7 wn)+ Qn(“’m bn)_ Qn(an’ bn) 2 O’
the equality (5) can hold if and only if
Q‘n(arn mn)—!_ Qn(w'rn bn) = Qn(a’n’ bn) fOI' ea‘ch n = 1’ 27 e

Hence, in fact, each point of z,[8] lies between a, and b,. Taking
anyone besides a, and b,, we have a point which lies between a, and b,
and is distinet from both. Hence X, is convex for k¥ = 1,2, ...

III. It remains to prove that each projection =,: X — X, preserves
convexity.

Let K be a segment in X. To prove that =, [K] is a segment or a point
it suffices to show that for any three point of K such that

e({an}, {2a}) + e ({@} 5 {bn}) = e({a,}, {b,})

there is )
0k (@ry Ty) + 0r (@) bi) = Qi (@, by).
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And the proof of this implication goes exactly as in part II above.
Hence condition (i) holds.
To check (ii) take L < X, to be a segment or a point. Put

Jo Togr oo fuma [L] it n <k,
An — L j.f n = k,
al fala e fL] i m> k.
Then {4,,, f,|4,,.,} i8 an inverse system of convex continua. Moreover,
all mappings f,|4,,,: 4,,, = 4, preserve convexity, because all mappings
fn. do. Hence, by virtue of part I, im{4,, f.|4,,,} is convex.

Clearly,
lim{A,,, fol 44} = 77 [L].

CorOLLARY 1. Let {X,,f,} be an inverse system of comvex continua
and mappings f,: X, ., — X, preserving convexity. If {A,, f.|4d,,.} 18 an
inverse system of convexr subcontinua A, c X, and mappings f,|A,,,:
A, ., — A, are onto, then the limit A =1lim{A,, f,|4,.,} i8 a conver sub-
continuum of the limit X = lim{X,, f,}.

Proof. In view of Theorem 1 it suffices to check that each mapping
ful4,., preserves convexity. Let § = A,,, be a segment. Since f, pre-
serves convexity by hypothesis, then f,[8] = (f,|4,,.)[S] is a segment
or a point, and so (i) holds. And since, by Theorem 1, projections =, and
7,4, DPreserve convexity, the set

(f'nlAn+1)_1 [8] = An+lnnn+ln;l [8]
is convex, and so also (ii) holds.

3. Main result. Consider the category A consisting of all compact
Hausdorff spaces and of all continuous mappings between them, and
let B be a subecategory of A. A covariant functor §: B — A will be called
a hyperfunctor of B if, for each (f: X - Y)eB, H(X) is a hyperspace
of X,9H(Y) is a hyperspace of Y, and the induced mapping f = 9H(f):
$(X) > $(Y) is defined by f(A4) = f[A4] for each A e $(X).

Of a special value will be hyperfunctors § of 8 which satisfy the follow-
ing condition:

(0) if X = {X,, =5, 2} i8 an inverse system in B and if its limit
lim X belongs to B together with all projections =,: limX — X, then for
each inverse system A = {4,, n3|4,, X} such that 4,¢$H(X,) and ngl4,
is onto A, there is limAe §(lim X).

THEOREM 2. Let
(6) X = {X,, n5, 2}

be an inverse system in B and let § be a hyperfunctor of B.

15 — Colloquium Mathematicum XXIII. 2
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Then
(7) H(X) = {H(X.), n5, 2}

18 an inverse system in W, and if the limit lim X belongs to B together with
all projections =n,: imX — X, then there exists a homeomorphism

(8) h: $(lim X) - lim §(X).

If, moreover, system (6) satisfies (w), then the homeomorphism (8) is
onto, i.e.
H(limX) 55 lim §(X).

Proof. Consider the diagram

H(lim X)
Fa lﬁ“
9‘) (X(;) <————-SJ(Xa)

obtained by imposing the functor § upon the system (6) augmented
with its limit. Since § is a functor, the diagram commutes and so (7) is
an inverse system.

Since § is a hyperfunctor, (7) is an inverse system in the category .
Hence its limit lim §(X) does exist (cf. [4], Theorem 3.2.10, p. 115) and
S0 there exists a unique continuous mapping (8) such that the diagram

- H(lim X)
T I
T, :
H(Xg) *+—H(Xq) :h
|
Pa fa
lim$ (X)

commutes, p, and p, being projections.

To see what h is like, take Ae$H(limX) and put A, = =,(4) for
each aeX. Since n35(4,) = mz(A) = Ay, the set {4,},.r i8 a thread of
the system (7), and since p,h(4) = 7, (4) = A,, there is h(A) = {A}aex-

Now we show that k is one-to-one. Assume, a contrario, that there
are two sets B, Ce $(lim X) such that B—C # 0 and

(9) B, =C, for each aelX.

Since B—C +# 0, there is a thread {b,},.» which is in B and not
in C. In view of the equality z,(B) = n,[B] we have b,¢B, for each aeZX,
whence and from the assumption (9) it follows that b,¢C, for each aeZ.
And by virtue of the last relation there exists, for each yeZX, a thread
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t, = {ci}scxe C such that ¢} = b, for all a <y. The set of threads ¢, is
a Moore-Smith sequence convergent to {b,},.>. In view of the compactness
of C, there must be {b,}..re C. A contradiction.

Hence h, as defined on a compact space £ (lim X) and being one-to-one
and continuous, must be a homeomorphism.

It remains to show that if the system (6) satisfies (»), 2 is onto. For
that purpose take A elim $(X). Then {p,(4)},.s i3 a thread of the inverse
system (7) and, consequently, A = {p,(4), 75|p.(4), 2} is an inverse
system consisting of spaces p,(4)e H(X,) and mappings 7j|p.(4) being
onto, and so, by virtue of (), its limit limA4 belongs to § (lim X). Therefore
Po(4) = 7, (limA) = p,h(limA) for each aeX and, consequently, h(limA)
=A.

Thus the proof of Theorem 2 is completed.

4. Applications. In this section we give some examples of hyper-
functors satisfying (w) and infer relevant corollaries. All hyperspaces
are assumed to have Vietoris topology.

1. If B = A, then the functor Comp: B — A such that Comp(f) = f
for each morphism f in B is a hyperfunctor of B satisfying (o).

In fact, if Y is Hausdorff compact, so is Comp (Y) (cf. {8], Proposition
4.9.2). Now, if f: ¥ — Z is a morphism in B, hence a continuous function
from Y into Z, f maps Comp(Y) into Comp Z (cf. [4], Theorem 3.1.8,
p- 104) and is continuous (see [8], Proposition 5.10.1). Thus the functor
is well defined. And since the limit of an inverse system of compact
Hausdorff spaces is a compact Hausdorff space itself (see [4], Theorem
3.2.10, p. 115), the functor satisfies ().

CorOLLARY 2. If {X,, ng, 2} is an inverse sysiem of compact Haus-
dorff spaces, then

Comp (lim{X,, n§, 2}) = lim{Comp(X,), =5, Z}.

As we have said in Section 1, this corollary has been proved by Sirota
[10].

2. If B is the category of all Hausdorff continua and of all continuous

mappings between them, then the funector C: B — U such that C(f) = f
for each morphism f in B is a hyperfunctor satisfying (w).

In fact, a Hausdorff continuum Y is by the definition a compact
(and connected) Hausdorff space, and so is C(Y). Now, if f: Y > Z is
a morphism in B, hence a continuous function from a Hausdoff continuum
Y into a Hausdorff continuum Z, f maps C(Y) into C(Z) (see [4], p. 241)
and is continuous (cf. [8], Proposition 5.10.1). Thus the functor is a well
defined hyperfunctor. And since the limit of an inverse system of Haus-
dorff continua is a Hausdorff continuum itself (see [4], Theorem 3.1.5,
P. 244), the functor satisfies ().
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COROLLARY 3. If {X,, ng, 2} is an inverse system of Hausdorff continua,

then
C(lim{X,, 73, Z}) = lim{0(X,), 75, Z}.

This corollary has been proved by Segal [9] in the case of metric
continua.

As follows from [1] and [6], each dendroid (i.e., a hereditarily decom-
posable and hereditarily unicoherent continuum) is a limit of an inverse
system of finite dendrites, X = lim{D,,, f,}. Hence C(X) = lim{C(D,), fn}
and the structure of hyperspaces C(D,) is known (see [2]).

3. If B is the category of all convex continua (or of all convex sub-
continua of the Hilbert cube I*°) and of all continuous mappings between
them preserving convexity, then Conv is a hyperfunctor of 8.

Indeed, if Y is compact convex, so is Conv (Y) (see [3]). Conse-
quently, if f: Y —Z is continuous, so is f: ConvY — ConvZ (cf. [8],
Proposition 5.10.1). Since, moreover, an image of a convex continuum
under a mapping preserving convexity is again convex, the functor is well
defined. And Corollary 1 implies (») in the countable case.

COROLLARY 4. If {X,, f.} is an inverse system of convexr continua X,
and mappings f, preserving convexity, then

Conv (lim{X,, f,}) = lim{Conv(X,), f,}.
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