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Introduction. The general notion of an absolutely free algebra impli-
citly occured first in Mathematical Logic as a device for investigating
formal languages: The class of all well-formed formulas of a formal
language together with the operations corresponding to the logical
connectives forms an absolutely free algebra; moreover, the recent study
of formal languages with infinitely long expressions requires the admission
of infinitary operations. On the other hand, absolutely free algebras,
being special cases of free algebras, have been investigated in General
Algebra both for their own interest and as a tool to define such notions
as “equation” ete. without using metamathematical concepts (see e. g.
Lowig [6], [7], Slominski [11]). It is well known that absolutely free
algebras can be axiomatized by an axiom system which is a direct ge-
neralization of Peano’s axiom system for the natural numbers. More
precisely: In case of one unary operation (the successors operation “’”)
and a one-element generating set {0} this axiom system reduces to the
classical Peano axiom system as formulated first in a more algebraic
way by Dedekind ([3], p. 16). This fact suggests the generalization of well
known methods, used in the theory of natural numbers, to the general
case, a suggestion that very often seems to be neglected.

The main purpose of this paper is to show how the Dedekind theory
of order can be generalized to absolutely free and related algebras with
infinitary operations. In this development we make use only of logic and
the most elementary parts of the theory of sets. We do not use in fact
ordinals and transfinite induction on rank numbers. Since indeed ordinals,
or even natural numbers, do not enjoy privileges in General Algebra,
their use is in this conneection an artificial device, not directly given by

* This note is an extended summary of the lecture given at the Conference
on General Algebra, held in Warsaw, September 7-11. 1964. The detailed and enlarged
exposition with proofs and further references will be published in German language
in Zeitschrift fiir mathematische Logik und Grundlagen der Mathematik.

[ wish to express my thanks to Professor Bjarni Jénsson for helpful remarks.
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the algebraic structure (). But there is another reason for avoiding the
use of natural numbers. Because the natural number system itself is
a very special absolutely free algebra, we want to derive its properties
by applying general theorems, and not — vice versa — to prove the
geueral theorems by using special propositions on natural numbers.
This is the point of view of General Algebra.

Because we do not make any restrictions on the number of
operations or their variables, one can’t fairly expect that the order we
introduce is a linear ordering. But as a fundamental property even in
case of infinitary operations, the minimal condition is satisfied. Thus
one can make use of the efficient principles of proof and definition by
“course-of-values induction”; these principles are very well suited to
replace induction on ordinals.

After an introductory part 0 fixing the notation and terminology,
in part 1 we define the ordering relation, state its fundamental properties,
and give characterizations of special classes of absolutely free algebras
by order-theoretic properties. In part 2 we apply the notion of order
to derive easily theorems on absolutely free algebras, some of them
known, but only with unnecessarily complicated proofs.

As starting point we do not use the standard definition of an
absolutely free algebra (that is as a free algebra in the class of all algebras
of a particular similarity type), but the generalized Peano axiom system.
To make this clear, we may use the term “generalized Peano algebras”
for the models of this axiom system (2).

0. Notation, terminology. M, and M, being arbitrary sets, the set of
all functions on M, to M, (i. e. the set of all single-valued mappings
from M, into M,) is denoted by M;"'. For any set M, |M| means the
cardinality of M.

Given a function a assigning to every element k of a set K exactly
one element «; of the set A4, it is sometimes convenient to write also
a = (ap)rx Or @ = (a;|keK), and to call a a K-sequence in A or a family
of A-elements with index set K. An operation f of type K in A is a function
on A¥ to A, thus f assigns to every K-sequence a in A exactly one element
f(a) = f(ax|keK) of A. If K is an empty or, resp., a one-element, finite,
or infinite set, then the operation f is said to be nullary or, resp., unary,
Sfinitary, or infinitary. 1t is customary to identify a nullary operation
with the unique element of its range.

(1) Moreover, many proofs are even essentially simpler if ordinals and transfinite
induction are not used.

() The equivalence of the two notions can easily be proved, but the proof
presupposes a somewhat efficient set theory. As we do not want to assume a special
set theory explicitly, we prefer the above-mentioned approach. So, in fact, our in-
vestigations are concerned with models of the generalized Peano axiom system.
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Let A and I be arbitrary sets, and t = (K;)i; any I-sequence of
sets. The ordered pair A = (A, (f;)iz> is an algebra of type v (or v-algebra)
if (fi)ir is an I-sequence of operations in A, every fi being of type K,.
We presuppose the basic notions of General Algebra as those of a homo-
morphism, a subalgebra, a congruence relation, the direct product of a family
of r-algebras ete. (3).

Let A = <A, (fi)iz> be any algebra of type v = (K;)ier- A8 usual,
we identify the algebra A with its fundamental set A if no confusion
is possible. W,; denotes the range of the operation fiy W, the union
of all ranges W 4;, ieI. Complementation with respect to the fundamental

set is indicated by a tilde, thus W, means the set of all elements which
are not values of any of the operations f;. In these and all following
cases we omit the indices denoting the algebra if no confusion can arise.

The operator C,, assigning to every subset M of the algebra A
the subalgebra B = C,M generated by M, is a closure operator (see e. g.
Birkhoff [2]). From this very property the simple principle of algebraic
wnduction follows: In order to prove a proposition H for all elements
of B = C,M, it is sufficient to prove that the set of all elements for
which H holds (1) includes the generating set M and (2) is closed under
the operations f;.

If R is a binary relation in a set M, R™1 denotes the inverse relation.
Given any two elements a,be M, we say that b is an R-predecessor of
a if bRa holds. Subsets which contain with any element a also all
R-predecessors of a are called initial R-sections. The intersection of
initial R-sections is obviously an initial R-section. Hence for any subset M’
of M there exists the smallest initial R-section of M containing M’. Initial
R~'-gections are also called final R-sections.

In the sequel we use the following logical symbols: “~? for negation,
“A7 for conjunction, “v” for disjunction, “=” for implication, “<”
for equivalence, “\/” for the existential quantifier, and “A” for the

T xr

universal quantifier,

1. Generalized Peano algebras, order, particular classes of generalized
Peano algebras. An algebra A = (A,(f,)i;> of type v = (K;)iq Will be
called a generalized Peano algebra if it satisfies the following three con-
ditions:

PL For all 4,jel, acA™i, and bed®i, it f;(a) = f;(b), then ¢ = j,
i. e. the ranges W;, iel, of the operations f; form a disjoint family of sets.

P2. For all ieI and a, bed™, if f,(a) = f;(b), then a = b, i. e. the
operations f; are one-one mappings from A%i into 4.

(®) For a detailed exposition see e.g. Schmidt [107].

Colloguium Mathematicum XIV 5
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P3. CW = A (axiom of induection) (*).
The axiom P3 implies the principle of algebraic induction with W

as generating set. In case of the natural number system, i. e. the Peano

algebra with one unary operation and a one-clement generating set

W = {0}, this principle coincides with complete induction.

For the present, let A = (A, (f;);z> be an arbitrary algebra of type
7 = (K,)ics- Generalizing the successor operation for the natural number
system, we define an algebraic successor relation Sin A: Given any a, bed,
a8b shall hold if and only if there exist iel, aeAd™i, kyeK; such that
a(k,) = a and f;(a) = b. If a8b holds, we call b an algebraic successor
of a, or a an algebraic predecessor of b. The ordered pair <4, 8) is said
to be the diagram of the algebra A. Even in a case of generalized Peano
algebras, neither S nor the inverse relation 87! is necessarily single-
-valued, of course (°).

Finally, using the algebraic successor relation §, we define our
relation < in 4: Given any two elements a,bed,a << b shall hold if
and only if there exists an algebraic predecessor b of b such that a is
contained in the smallest initial S-section that contains b'.

From the definition follows at once that < is transitive (¢). In general,
nothing more can be said about the relation < which may be called the
“natural” less-than relation of the algebra A. But for Peano algebras
we have

PrOPOSITION 1. The natural less-than relation of any generalized
Peano algebra is irreflexive, hence an irreflexive ordering (7).

Proof by algebraic induction.

COROLLARY. For any two elements a and b of a generalized Peano
algebra,

(1.1) a<b<wa<hana#b.

Remark. In an arbitrary algebra A (1.1) obviously holds if and
only if the natural less-than relation is irreflexive. But this may be false
even if the relation < is a (reflexive) ordering. On the other hand, if <
is irreflexive, then < is anti-symmetric, hence a reflexive ordering. In
this case we may simply speak of the natural ordering of A.

(4) One can treat the set W as a primitive notion, too, as is usually done in the
case of the natural number system; see e. g. Henkin [5].

(%) See proposition 4 and proposition 5.

() As a matter of fact, the relation < is the transitive hull of 8.

(") An irreflexive ordering is an irreflexive and transitive relation; a reflexive
ordering is a reflexive, anti-symmetric, and transitive relation. Let R be any transitive
relation, then the union of R with the identity is called the quasi-ordering correspond-
ing to R. Throughout this paper the symbol “<” denotes the quasi-ordering corres-
ponding to the relation <.
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For the sequel the following proposition — in a case of infinitary
operations perhaps somewhat unexpected — is fundamental.

Propostrion 2. The natural ordering of any generalized Peano algebra
satisfies the minimal condition.

It is well known that, for any ordered set (M,<), the minimal
condition is equivalent with the

PRINCIPLE OF ORDER-THEORETIC INDUCIION. In order to prove a
proposition H for all elements of M, il is sufficient to prove that, given any
element ae M, the assumption that H holds for all elements x < a implies
that H holds for a.

In particular, this prineiple may be applied in every algebra whose
natural less-than relation is an ordering with minimal condition. Then
we call it course-of-values induction.

Remark. In any ordered set (M, <) the minimal condition also
implies the principle of definition by order-theoretic induction (see Schmidt
[8]). This principle is another very useful tool in the theory of generalized
Peano algebras, but since we will not apply it in this paper, we omit
its exact formulation. We only mention that it implies as a special case
the following

Prorosition 3. If A is any generalized Peano algebra, then every
single-valued mapping from W a4 nto an arbitrary algebra B of the same
type can be extended to « homomorphism from A into B, i. e. W 4 18 an
absolutely free generating subset of A.

Obviously, the following statements are true. Let A4 = (A, (fi)ia>
be any algebra, I' a subset of I, and A|I' = (A, (fi)ig> the I'-reduct
of A. Then

(1.2) a<arb=a<,>b.

Furthermore, if for every 1el —1' the set K; is void, then the rela-
tions <4 and <, are trivially identical: The nullary operations of A
have no influence on the natural less-than relation. For any generalized
Peano algebra A,

(1.3) Min(4) = W o PO

(Min (4) = set of all minimal elements of (4,<); P = get of all
constants, 1. e. nullary operations).

The Peano algebra of the natural numbers is linearly ordered by its
natural ordering. Here the question arises which other generalized Peano
algebras also have this property. Furthermore, it may be interesting
to know for which generalized Peano algebras the algebraic successor
relation 8 or its inverse relation S! are single-valued. These questions
will be answered in the sequel.
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To every ordering << in a set M there is assigned a covering relation <
defined by
(1.4) a;-%bdga<b/\/\u(a<m<b:>m:m).

Xe ]

Obviously, for any algebra A with irreflexive natural ordering <,
the corresponding covering relation < , is contained in S,. Even for
Peano algebras the converse (and hence equality) holds only in very
special cases.

PROPOSITION 4. For any non-void generalized Peano algebra A the
following conditions are equivalent:

1) /} |K;| <1, t.e there are only nullary and unary operations;

ie

2) 85" is single-valued;

3) 84 = 34, % e. 8, 18 consecutive (8).

PROPOSITION b. For any non-void generalized Peano algebra A the
following conditions are equivalent:

1) 8, is single-valued;

2) Besides constants there exists at most one unary operation.

Peano algebras with natural linear ordering are characterized by

PROPOSITION 6. For any non-void generalized Peanmo algebra A the
following conditions are equivalent:

1) <4 %8 a linear ordering, hence a well-ordering;

2) a) |Wo FO| =1,

B) Besides constanis there ewists at most one unary operation.

Checking the condition 2, one obtains the following

COROLLARY. There exist exactly four essentially different (°) (non-void)
linearly ordered Peano algebras. ‘

In order theory ordering relations which have the property that
they are equal to the transitive hulls of their corresponding covering
relations are of importance. They are said to be jump-orderings (see
Schmidt [9]).

ProroSITION 7. For any non-void generalized Peano algebra A the
following conditions are equivalent:

1) A\ K; finite: all operations are finitary.
vel
2) The natural ordering <<, is a jump-ordering.

(8) Consecutive relations have been investigated e.g. by Schmidt [9].
(%) Here “essentially different” means “non-polyisomorphic” in the sense of
Birkhoff [2], p. 167.
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Let A be an arbitrary algebra, and B a subalgebra of 4. Then
obviously
(1.5) AN Ne<gb=>a<,b

aeB beB

holds, i. e. the natural less-than relation of the subalgebra B is contained
in the restriction of <, on the subset B of A. The question in which
Peano algebras the converse also is true leads us back to algebras with
at most unary operations.

PROPOSITION 8. For any non-void generalized Peano algebra A the
following conditions are equivalent:

1) a) ALK <1, 0r f) W, =0.

iel
2) For every. subalgebra B of A,

AN Na< gbhsa<,b.
aeB beB

3) Bvery subalgebra of A is a final < ,-section.

2. The class of generalized Peano algebras. Using the notion of order,
we can easily derive some interesting properties of generalized Peano
algebras. Except for the propositions 1 and 2, and the simple statement
(1.5), we do not apply results of the preceding part.

We say that an algebra A satisfies ariom P3* if the natural less-than
relation is an irreflexive ordering with minimal condition. Simple, but
fundamental for what follows is

ProposITION 9. For any algebra A, the axiom P3* implies P3.

This proposition is not true in general, if instead of P3* it is only
required that the natural quasi-ordering <, is a (reflexive) ordering
with minimal condition. This is shown by the following

Example 1. Let A be the set of all natural numbers, f the successor
operation, and ¢ the identity on A. The natural quasi-
ordering of A = (A, f,g)> is a reflexive ordering with mi- | ;
nimal condition, but P3 is not satisfied. !

The axiom P3* is really stronger than P3:

Example 2. Let A4 = {A,f> be the algebra with
one unary operation which is given by the adjoining dia-
gram. A satisfies P3, but not P3*.

There are some algebraic standard processes forming
new algebras from given omnes, as e. g.” formation of subal-
gebras, homomorphic images, direct products. Axiom P3*,
compared with P3, has the advantage that it is preserved !
in come of these cases whereas P3 is not. :
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While simple counter-examples show that axiom P3 is not heredi-
tary, i. e. 18 not preserved under formation of subalgebras, (1.5) implies

(2.1) If an algebra A satisfies P3*, so does every subalgebra of A.

Trivially, the axioms P1 and P2 are heveditary, thus we obviously
have

ProroOSITION 10. Every subalgebra of a genevalized Peano algebra is
a generalized Peano algebra (1°).

In the sequel, if we speak of the direct product of a family (Ag)w.y
of algebras, we will always exclude the frivial case 7 = 0,

ProrositioN 11. The direct product of a family (Ap)wy of non-void
algebras satisfies P2 if and only if every factor A; does.

The proof is routine.

A corresponding proposition holds for axiom P1, but one can even
prove the much stronger

ProposirioN 12. If the algebra A satisfies P1, so does every homo-
morphic inverse image of A.

CoROLLARY. If at least one factor Ay of the family (Ap)y satisfies P1,
so does the direct product.

A corresponding proposition holds for the order-theoretic property
P3*, but is false for P3.

ProprosiTiON 13. If the algebra A satisfies P3*, so does every homo-
morphic inverse image of A.

COROLLARY. If at least one factor A, of the family (Ay).y satisfies P3*,
so does the direct product.

From the preceding propositions, resp. corollaries, we get

PRrROPOSITION 14. The direct product of any (non-void) family of
generalized Peano algebras is a generalized Peano algebra.

This proposition has the immediate consequence that there exist
many generalized Peano algebras (= absolutely free algebras) which are
decomposable into non-trivial factors. This may be somewhat unexpected
because absolutely free algebras are considered of such a simple structure
that they should be indecomposable.

We will not give a complete answer to the question which generalized
Peano algebras are decomposable, but mention only some particular cases:

1) Let v = (K;);; be a finitary type, i. e. all K; be finite. If I is
at most countable, then the generalized Peano algebra 4 of type r with

a countable set W 4 i3 decomposable into a direct product of two non-trivial
generalized Peano algebras.

(19 A proof by transfinite induction in Stominski [11], p. 24.
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In a case of a finile set w 4 the sitnation is different. But even then
some generalized Peano algebras are decomposable.

2) Let = be a type with only one operation f of type K.

«) If f is at least binary, i. e. |K| > 2, then any generalized Peano
algebra A with a finite set W 4 18 imdecomposable;

B) If f is wnary, then no generalized Peano algebra A with a finite
set WA can be decomposed into a direct product of generalized Peano

algebras. But using the full content of the preceding propositions and
corollaries, one can prove that any generalized Peano algebra A with

a finite set W, containing at least two elements is decomposable into
a direct product of two algebras, one of them being a generalized Peano
algebra. :

Furthermore, it follows from the foregoing that the direct product
of a family of non-void algebras, none of which is a generalized Peano
algebra, may be a generalized Peano algebra:

Example 3. Let A = (A, (f,g)> be the Peano algebra with two

unary operations f and g, and a one-element set W a4 = {x,}. We define
two binary relations R, and T, each consisting of just one ordered pair,
(@oy f(F(e))> and <f(g(w)), g(g(a,))>, respectively. Let R and T be the
smallest congruence relations in A containing R, resp. T',. The quotients
A|R and AT both satisfy P2. Moreover, A/R satisfies P1, but not P3,
and AT satisfies P3*, but not P1. Thus the direct product is a generalized
Peano algebra, but neither factor is.

It may be of some interest to give characterizations of those algebras
which have absolutely free quotients. We know already that the properties
P1 and P3* are mecessary conditions. We conclude this paper with the
remark that these conditions are not sufficient.
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