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This is a contribution to Problem 1.2 of Gritzer [3]:

Given a system C of equivalence relations on a set 4, how can one
decide whether there is a full finitary algebraic structure on A whose
congruence lattice is C?

As I had conjectured in my paper [1], the existence of a reasonable
answer is somewhat unlikely. An effort to give more substantiation for
this conjecture produced some ideas and results which — though still
far from being conclusive — shed some new light on the subject and are
most certainly capable of further development.

A suitable framework is devised in Section 1: the category CON of
congruence systems, i.e., sets together with congruence lattices of finitary
partial algebras, with an appropriate notion of morphism. Among other
things, this category has direct limits, some preservation problems of
which are discussed in Section 2. In particular, an example shows that the
property of being the congruence lattice of a full two-valued algebra
(cf. [1], Theorem 3) is not; preserved under direct limits in CON. Finally,
in Section 3, a fairly powerful higher-order formal language # is de-
veloped whose statements are preserved under certain direct limits
in CON.

It follows that one cannot characterize in % (within CON) congruence
lattices of full two-valued algebras. Although it seems clear upon inspec-
tion that the property of being the congruence lattice of an arbitrary
. full algebra is not preserved under direct limits in CON either, I failed
to construct a counterexample. If such a counterexample were found,
we would at least have the modest result that Gritzer’s problem is not
solvable in Z.

1. The category of congruence systems. It is well known that a system
C of equivalence relations on a set A is the congruence lattice of a finitary
partial algebraic structure on A if and only if C contains ¢, (the identity
relation on A) and is closed with respect to arbitrary intersections and



178 M. ARMBRUST

under unions of directed subsystems (“inductivity”). This prepares the
stage for the present discussion.

Definition 1. A congruence system is a pair (4, C), where A is a set,
and C a system of equivalence relations on A containing ¢, and closed
with respect to arbitrary intersections and under unions of directed sub-
systems. The elements of C are called congruences.

The objects given, we only need to define suitable morphisms in
order to establish the category CON of congruence systems. (For notions
and results from category theory used in the sequel, see the first two
chapters of Pareigis [4].) Considering that it would not make much sense
to recur to some type of algebraic structure, we have to concentrate on
those properties of ordinary homomorphisms of algebras which can be
formulated in terms of congruence relations. The following seems to be
the most appropriate definition:

Definition 2. A morphism from the congruence system (4, C) to
the congruence system (B, D) is a mapping ¢: A — B such that the coun-
terimage of any geD under ¢ belongs to C.

For a congruence system (4, C), let P(4, C) be the set of all finitary
partial operations f on A that are compatible with C in the usual sense:
If 0eC, if (#y,...,2,)y (Y15 +..yYp) edomf, and if (x;,y;)ee for each
i=1,...,m, then (f(@1,...;@,),f(¥1)--.yYn))ce. Then we have the
following useful characterization of morphisms (cf. the r-morphisms of
Goetz [2]):

THEOREM 1. Let Q be any set of partial operations on A such that C is
the congruence lattice of the partial algebra (A, Q). Then the mapping ¢: A~ B
i8 a morphism from (A, C) to (B, D) in CON if and only if, for each partial.
operation f eQ, there exists a partial operation g« P(B, D) such that, for any
(@19 ..y x,) edom f, we have (pzy,...,9¢x,)edomg and ¢@f(®y,...,T,)
= g(P®1y ..., POy).

Proof. Let ¢: A — B be a morphism and suppose fe P(4, C) 2 Q..
We claim that, for (2,,...,2,) edom f,

G(PTay ooey @) = @f (D1 ..y Tp)

defines a partial operation g «P(B, D). First, assume that ¢z; = ¢y, for
i =1,...,m, and (@1, ..., &), (Y1,...) Yn) edom f. Then (z;, y;) ep~" (¢5),
and since ¢~ (¢p) €C, it follows that (f(@y, ..., %n)s f(Y1y --+) Yn)) €97 (tp),.
ie, of(®yy ...y %) = @f(Y1y...y¥,). In the same way, we infer that.
geP(B, D); we just have to substitute an arbitrary geD for ¢z in the.
argument.

For the converse, it suffices to show that, for g e D, ¢~ () is compatible:
with ¢, which is a routine argument.

Observe that, in Theorem 1, we can always choose @ = P(4, C).
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It is easy to see that monomorphisms are injective and epimorphisms
surjective mappings. An isomorphism is a bijective morphism whose
inverse is also a morphism.

Accordingly, the subobjects of (4, C) are represented by congruence
systems (A’, C’') such that A’< A and C’' =2 C | A’ (the restrictions of
the congruences in C to A’). Note that, in particular, (4’, C | 4’) is a con-
gruence system; this is what we mean by a subsystem of (4, C).

The quotient objects are given by the congruence systems (4 /o, D),
where peC and D < C/p (A/p is the partition of A modulo ¢, and C/g
consists of the equivalence relations on A4/p induced by the congruences
o «C with o 2 g). In particular, (4/o, C/o) is a congruence system; this
is what we mean by a quotient system of (4, C).

THEOREM 2. The category CON has difference kernels and difference
cokernels.

Proof. If ¢, y: (4, C) - (B, D) are morphisms, then it is obvious
that the inclusion mapping i: A" — A of the subsystem 4’ = {ac4 | ga
= ya} of (4, C) constitutes a difference kernel for ¢, .

Dually, let ¢, y: (4, C) — (B, D) be morphisms, and let ¢ be the
smallest congruence in D containing (¢a, ya) for each aeA. Then the
canonical projection of B onto the quotient system B/p of (B, D) yields
a difference cokernel for ¢, .

THEOREM 3. The category CON has products and coproducts.

Proof. For a family of objects (4,, C;), teT, we obtain a product
as follows (cf. the p-product of Goetz [2]):

Let A = [] A, (the cartesian product) and define, for every positive
teT

integer » and each family of n-ary partial operations f;eP(4,, C;), an
n-ary partial operation f on A by

f ((“’1:):«1'; ceey (wm)ur) = (ft(wlt’ ceey a’m))m'

whenever (zy, ..., Z,) edom f, for each teT. Let @ be the set of all partial
operations on A obtained this way, and let C be the congruence lattice
of the partial algebra (4, @). Then the congruence system (4, C) together
with the cartesian projections =,: A — A4, is the desired product. In fact,
the n,’s are morphisms by Theorem 1. If ¢;: (B, D) — (4, C;) is a family
of morphisms, then the unique mapping ¢: B - A with ;¢ = ¢;, teT, is
easily seen to be a morphism, again by Theorem 1.

The coproduct can be defined without recurrence to partial opera-
tions. Let A be the disjoint union of the A4,’s, and let C consist of all
equivalence relations ¢ on A such that ¢ | 4,¢C, for all teT. Then (4, C)
is a congruence system, the inclusion mappings ¢,: 4, — A are morphisms
and, for a family of morphisms ¢,: (4;, C;) - (B, D), the unique mapping
¢: A > B with ¢t; = ¢, teT, i3 a morphism.
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Remark. The coproduect can also be described by means of partial
operations. If C, is the congruence lattice of the partial algebra (4, @,),
teT, and if (4, C) is the coproduct of the (4,, C;) as constructed above,
then it is clear that C is the congruence lattice of the partial algebra
(4, Q), where @ is the disjoint union of the @,’s.

COROLLARY. The category CON is complete and cocomplete.

2. Direct limits in CON. We will study the behavior of some distin-
guished properties of congruence systems with respect to direct limits.
A congruence system (4, C) is called unary if C is the congruence lattice
of a unary partial algebraic structure on A4 (cf. [1], Theorem 2). Suppose
that (4,, C;) is a family of unary congruence systems; then it is clear
from the remark following the proof of Theorem 3 that the coproduct
of the family (4,, C;) is unary. Also, a quotient (A4/o¢, C/p) of a unary
system (A4, C) is trivially unary. So we have

THEOREM 4. The limit of a direct system of unary congruence systems
18 unary.

Now consider the property of permutability of the congruences.
This one is not preservedu nder coproducts. However, it is clearly preserv-
ed under the formation of quotients and also under the following special
kind of direct limit:

Let T be a directed set, and let (4,, C;) be a family of congruence
systems such that, for #, <1?,, (4;, Cy)) i8 a subobject of (4, Cy,), i.e.,
4, < 4y, and C,, | 4; < C; (such a family will be called an injective
direct system). The direct limit of this family is the congruence system
(4, C), where A is the union of the 4,’s and C is the set of all equivalence
relations ¢ on A such that o | 4,¢C; for all te7. Thus we have
proved

THEOREM 5. The limit of a direct system of congruence systems with
permutable congruences has permutable congruences.

Another important property is the closure under equivalence-theoretic
joins. Trivial examples show that this property is not preserved under
coproducts. Again, it is easy to see that it is preserved under the formation
of quotients and under limits of injective direct systems. Let (4, C,),
teT, be an injective direct system, let (4, C) be its limit as described
above, and assume that all C,’s are closed with respect to equivalence-
theoretic joins. If p, 0 C, we have to show that (ovo) | 4,¢C, for each
teT, which follows from the inductivity of the C,’s and the fact that
(evo) | 4; is the union of the relations ((¢ | 4,)v(o | 4,)) | 4, for s>1.

THEOREM 6. The limit of a direct system of congruence systems that
are closed with respect to equivalence-theoretic joins is closed under equiva-
lence-theoretic joins.
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Let us call a congruence system (A4, C) full two-valued if C is the
congruence lattice of a full two-valued structure on A4 (i.e., every operation
used is supposed to have exactly two values, which may depend on the
operation; note that the operations can always be chosen unary). Clearly,
a quotient of a full two-valued system is full two-valued. However, this
property is not preserved under direct limits. This fact appears trivial,
but the counterexample is rather sophisticated and needs some preparation.

Let (4, C) be an arbitrary congruence system. We denote by F,(4, C)
the set of all full unary two-valued operations on A that are compatible
with C; for heF,(4, C), ¢, denotes the equivalence relation on 4 induced
by h, i.e., (x, y) e¢; iff hx = hy. The proof of Lemma 1 is obvious.

LEMMA 1. Let heFy(A, C), imh = {u, v}; let peC have exactly two
equivalence classes, and suppose (u,v)¢o. Then o = &,.

For the moment, we will call a congruence system (A4, C) regular
if it is full two-valued and satisfies the following conditions for any ,, A,
€F2(A’ C):

If imh, = imh, = {u, v}, then &, =&, and h;u # ho (i =1,2);
if imh, # imh,, imh; = {u;, v;} (¢ = 1, 2), then hyu, = h v,y hyu, = hyv,.
Observe that if (4, C) is regular and heF,(4, C), then ¢,¢C.

LEMMA 2. Let (A, C) be regular, feFy(A, C),im f = {a, b}; let oo be
an element not in A, and suppose B = AU{oco}. Then (A, C) is a subsys-
tem (1) of a regular system (B, D) such that, for every heF,(B, D), imh
# {a, b}.

Proof. We define the following two-valued operations on B:

a if xed and fr = fa,
r =
5 oo  otherwise;
b if xedA and fx = fb,
oo  otherwise;

faz =

gz if ved,

gv =1ga (=gb) if # = oo,
for each geF,(4, C) with img + {a, b}.

(In this proof, the letter g will always mean an operation of this kind.) Let
D be the congruence lattice of the algebra on B given by f,, f, and the §’s.

If o is an equivalence relation on 4 and ceA, we denote by o° the
smallest equivalence relation on B containing ¢ and (¢, co). Whenever
o € C, we have g% ¢®eD. Trivially, ¢ is compatible with f,. For (z, y) <o,
we have (§x, gy) = (92, 9y) ce < ¢°% and (fx, fy)eo. If fx = fy, then also

(*) Subsystem means D4 = C.

2 — Colloquium Mathematicum XXVII.2
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fo®# =foy; if fr =a and fy = b, then (a,bd)ep, hence (b, )€ For
(¢, ©)ep? wveA, we have (z, a) ep, 80 (fr, fa) ep. If fr = fa, then fr # fb,
hence f,z = oo = fyo0; if fx # fa, then (b, o©)e@® as above. Finally,
(g, Goo) = (g2, ga)eo < o™

In particular, it follows that D | A = C. Conversely, suppose that
ceD, and let ¢ = o | A. Clearly, o is compatible with each ¢ since ¢ is
compatible with g. It remains to show that ¢ is compatible with f. Let
(,Y)eg, fo = a, fy =b. If fa = a, we have (a, ) = (f12, f1y) e and
(00, b) = (fsx, f3y) €0, hence (a,b)eo; if fa =b, we have (b, ) =
(f22,f2y)co and (o0, @) = (f,@, f,9) <o, hence (a,d)eo.

It is easy to see that &, = ()% &, = (5)% and g = (5,)* = ()"

Now let helF,(B, D). Then imh = {a, b}, for otherwise we would
have, by Lemma 1, &, = (¢;)® and ¢, = (¢)% a contradiction. If imh < 4,
then g: =h | AeFy(4, C), so & = (¢,)* by Lemma 1, hence hoo = ha
=ga = goo and h = §. If imh = {¢, oo} with ce4, then ¢ = a or ¢ = b.
For suppose, without loss of generality, that (a,c)ee = (¢,)°eD; then
ha = he # hb = hoo, and this is only possible if ¢ = a, in view of (¢4)* e D.
If imh = {a, oo} = imf,, then ¢ = (&)° = &,5 if imh = {b, oo} = imf,,
then &, = (&)* = &,. It is now straightforward that (B, D) is regular.

Finitely, many successive applications of Lemma 2 yield the follow-
ing construction:

THEOREM 7. Let (4, C) be a finite reqular congruence system. Then
there exists a finite regular congruence system (B, D) such that (A, C) is
a subsystem of (B, D) (i.e., A < Band C = D | A) and, for every h e F'y(B, D),
imh & A.

Now, we are in a position to give an example of an ascending chain
(4,, C,), n > 0, of full two-valued congruence systems whose direct limit
is not of this kind. We choose 4, = {0, 1, 2} and C, = {1, a, f, 4y X A,},
where A4,/a = {{0,1}, {2}}, A4,/ = {{0,2}, {1}}. This is easily seen to
be a regular system. Inductively, we proceed as follows:

Suppose (4,, C,) is a finite regular congruence system. Applying
Theorem 7, we obtain a finite regular system (A4,,,, C,.;) such that
A,c4,.,,C,., |4, =C, and, for every heF,(4,,,,C,,,), imh ¢ A,.
In the direct limit (4, C) of this sequence, A is the union of the 4,’s, and
C | A, = C, for every n. So C does not contain all equivalence relations
on A, but there is not a single full two-valued operation on A compatible
with C. Suppose heFy(A, C), imh< 4,. Then h | 4,,,eFs(A,,,, C,.,),
a contradiction. Therefore, C cannot be the congruence lattice of a full
two-valued algebra.

3. The inductive language #. The following symbols will be used
besides the usual logical constants: predicates =, <, K and H, individual
variables «, v, ... and variables for equivalence relations g, o, ...
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The interpretation of the predicates in a congruence system (4, C)
is as follows.

Equality and inclusion in the usual set-theoretic sense; if a is an
equivalence relation on 4, and a@, b, ¢, deA, then K(a) means aeC, and
H(a, b, ¢, d) means that (¢, d) is not in the C-hull of (a, d), i.e., (c, d) ¢
for some Be¢C with (a,b)ef; moreover, a(a,b) means (a, b)ea. Accor-
dingly, our atomic formulas are of the forms ¢ =y, ¢ = 0, ¢ < 0, K(p),
H(u,v,2,y) and o(z, y).

Now let (4,, C;), teT, be an injective direct system of congruence
systems and (4, C) its limit. If ¢ and f§ are equivalence relations on 4
and a,b,c,deA, and if S(a,p,a,b,c,d) is an atomic statement or
negation of such, then S(a, g, a, b, ¢, d) holds in (4, C) if and only if
there is a fyeT such that S(a | 4, 8| 4, a,b,c,d) holds in (4,, C))
for each t > t, (S holds in almost every (A,, C;)). This is obvious except
for H(a, b, ¢, d); here we use the inductivity of the congruence systems
to verify that the C-hull of (a, ) in A is the set-theoretic union of the
C;-hulls of (a,b) in A, (provided a, bed;). Moreover, if one of the state-
ments a =b, a #£b, a|dy #h| Ay, alA, $]4,, T1K(a|4,),
TH(a, b, ¢, d), (a]|Ay)(a,b), "I(a] 4y)(a,d) holds in (4,, Cy), then
the corresponding statement holds in (4,, C,) for each t>1,. This is
not the case for the atomic statements ¢ = , a = , K(a)and H(a, b, ¢, d).
We call these four types of atomic formulas eritical.

Suppose that a,, ..., a, are equivalence relations on 4, a,,...,a,¢c4d,
and S(ayy ...y @y, @y, ..., @,) 18 & statement without quantifiers. Observing
that the truth values of atomic statements are ultimately constant, we
conclude that S(ayy...,apn, ,...,a,) holds in (4, C) if and only if
S(a, | Agy ...y ap | 44y 84, ..., a,) holds in almost every (4,, C,). A state-
ment of the form

Hy, ... E[qu(al, ceey Ouy Byy eeny Gpy Y1y oony Yg)y
where 8 is quantifier-free, still holds in (4, C) if and only if

Hyy ... Ty,S(ay | Agyeevyam | Agy @yyoiny Gy Y1y eey Yg)

holds in almost every (4,, C;), provided that none of the variables y,, ..., ¥,
appears as an argument in any positive occurrence of the predicate H
in the disjunctive normal form of §. More care must be taken with state-
ments

Hoy ... HopHy; oo YgS(ary ey Gy Byyeeny Gyy O1yeeey Opy Y1y oeey Yg)-

If such a statement holds in (4, C), then it is clear that the same
statement with the a;’s properly restricted holds in almost every (4,, C)).
The converse is true if we require that no bound individual or relational
variable occur as an argument in any positive instance of a critical atomic
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formula in the disjunctive normal form of §. In fact, we can find a ¢, such
that, for each positive occurrence of a critical formula, the truth value
is constant for ¢ >{, (with the proper restrictions of the a;’s), and

S(a, | A¢07 ooy O | Alo’ Gy eeny Ony Bryeees Bpybryeeey by)
holds in (4,,, C,) for some b,, ..., b;ed, and some equivalence relations

B1y..-s Bp o0 A, . Choosing equivalence relations fB;,...,6, on A such
that B; | 4, = B; (¢ =1, ..., p), we infer that

S(GyyeeeyOpy@yyeeey Quy Bryeeey Ep’ biyeeny by)
holds in (4, C).
This discussion justifies the following definition:
The language % consists of all statements of the form
Voi... Vo, Vo, ... Vo,Ho, ... Hop, "y, ... Hy,8(01y ---5 ¥,),

where § is quantifier-free and so existentially bound individual or rela-
tional variable occurs in a positive instance of a critical atomic formula
in the disjunctive normal form of 8. We have proved

THEOREM 8. Let (A4,, Cy), teT, be an injective direct system in CON
and (A, C) its limit. Then a statement of £ holds in (A, C) whenever it
holds in almost every (A4;, C,).

As examples, we formalize the properties discussed in Section 2.
(i) Unary systems (Theorem 4):

VeTuHoHoHy((o(u, v) & TH (u, v, 2, y) >e(z, y)) =K (o).
(ii) Permutability of the congruences (Theorem 5):

VgVonVszHu(K(g) & K(o) & o(z,y) & o(y,2)=>0(2, u) & o(u, w))
or
VuVoValy(TH (u,,2,9) & T1H(v, z, u, y)).

(iii) Closure with respect to equivalence-theoretic joins (Theorem 6).
Note that, in this case, (i) also holds (see [1], Corollary of Theorem 2).
So we can use statement (i) along with infinitely many statements of the
form

VoVoV1Vz ... V2, VuVo Vo Vy(K (o) & K(0) & o(%,2,) & 6(21,25) & ...
e & 0201, %) & 0(2,, V)& oS T& 0= v & T1H(u,v,2,y)=> t(z, y)),

one for each odd »n > 1.

The fact that these properties can be formulated in .# indicates that
our language is not too trivial. However, it is impossible to formulate
in & (within CON) the property of being the congruence lattice of a full
two-valued algebra, and it is my conjecture that this is also true for con-
gruence lattices of arbitrary full algebras.
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