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An object A is free with respect to a category R of algebras of a fixed
type if it has a set of free generators, i.e., if there exists a set M
of generators of 4 such that for every algebra B in the category every
map ¢ : M — B can be extended to a homomorphism ¢: 4 — B. It is
known (cf. [5], p. 23) that the notion of a free algebra cannot be defined
purely in categorical terms, i. e. in terms of homomorphisms and their
superpositions (without using the notion of an element of an algebra).
A categorical substitute of the notion of a free algebra and several examples
are given in [9]. Another example is in [10], and still another example
follows.

Let us consider the category of metric spaces of diameter less than
or equal to 1, the morphisms being” contractions (a contraction means
a transformation which satisfies the Lipschitz condition with the
constant 1). Then an isomorphism is just an isometry. A free join of a
family {A}.p of objects in this category can be constructed as a disjoint
union 4 = Y 4, (a free join in the category of all sets) metrized as follows:
o(a,b) = oi(a, b) if both a and b belong to the same space A;, and
o(a,b) =1 if aed;, bed,, t = u. A direct join is the Cartesian product
[]A; with the uniform metric

o({as}, {bs}) = sup{ee(as, by) 1 teT'}.

Clearly a one-point set is a basic free object in this category
and hence a “free metric space” is a set 4 with the trivial distance
o(a,b) =1 for a # 0.

The notion of a basic free object, defined in [9], is actually very
close to that of an integral object due to MacLane [7], p. 507, yet they
are not equivalent. It is easy to show that if a category has both an

* This paper was presented on the Conference on (eneral Algebra held in
Warsaw, September 7-11, 1964, and is a kind of supplement to the paper [9]. The
notion of a category and main definitions can be found in [6] and [8]; other terms

not explained here are from [9].
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integral object and a basic free object, then they are isomorphic. The
same applies to cointegral and basic direct objects. In the category of
compact spaces and continuous maps, however, there is no cointegral
object, but the unit interval is a basic direct object.

If F'is a basic free object in a category K, we can define the notion
of a supermorphism, viz. a morphism a: 4 — B is called a supermorphism
if the adjoint map

Hom (F, ) : Hom (¥, 4) — Hom (F, B)

is onto (*). It can be shown that every retraction is a supermorphism
and every supermorphism is an epimorphism.

We can also define the notion of a projective object in a standard
way using a supermorphism instead of a surjection. Then the Universality
Theorem (*) can be simplified because we do not have to assume that ¥
18 projective and striet, for both the assumptions are included in the defi-
nition of a supermorphism. Another advantage of the new approach is to
avoid new primary notions and use categories instead of bicategories.

In certain categories supermorphisms have nice characterizations,
but even if they do not, the problem of particular validity of the Uni-
versality Theorem is reduced to the problem of characterizing the
supermorphisms.

Dually we define a submorphism (using a basic direct object). If we
identify submorphisms in the standard way, we get a definition of a
subobject.

In [9] there is a discussion of wvarious troubles concerning the
appropriate definition of a subobject in categorical terms; Grothendieck’s
definition is not acceptable in certain important categories (like the
category of locally compact groups and continuous homomorphisms)
and in Grothendieck’s definition monomorphisms should be replaced
by more special morphisms (by “injections”). The definition of a subobject
which we have just introduced, has several advantages and in some
categories it fits better our purposes than Grothendieck’s definition using
any monomorphisms (*). E. g., in the ecategory of Banach spaces and

() The parallel terms “submap” and “supermap” have been used by Mac-
Lane [7], p. 497, in a somewhat similar context.

(*) See [9], p. 16. The author is obliged to the reviewer for pointing out that the
set 7' defined in the proof of Proposition 5.4 in [9], p. 15, should be assumed to be
non-empty, because otherwise the statement is not true. It is enough to assume that
there exist objects 4 and B and morphisms a: .4 -~ B and f: A —- B in the category
such that « # f. The same assumption should be added to the Universality Theorem
(p. 16).

(*) Ehresmann [2] gives a definition of an injection and a surjection in a ca-
tegory &, relative to a given functor into another category R, and a subcategory
of & . This, however, is not an intrinsic definition that we are looking for.
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bounded linear operators, a submorphism is just an isomorphism (in
Banach’s sense) onto a closed subspace, and a supermorphism is just
any morphism onto. ‘

In the category of completely regular Hausdorff spaces and con-
tinuous maps, a map a: A — B is a submorphism if and only if it is
a homeomorphism onto a subset ¢ of B such that every bounded real-
valued continuous function on € can be extended to a continuous
function on B with the same supremum and infimum. E. g., a homeo-
morphism onto a closed subspace of a normal space is a submorphism,
and the embedding A —> A into the Stone-Cech compactification is
also a submorphism.

In the category of locally compact Abelian groups and continuous
homomorphisms, the canonical embedding into the Bohr compactification
is a submorphism though it need not be a homeomorphism (it must be
continuous, one-one and a homeomorphism in the weak topology de-
termined by the dual group).

The two notions, supermorphism and submorphism, can be used
as a starting point for certain homological investigations in non-abelian
categories. For instance, let us consider the following definition (see
Freyd [3], p. 126): An injective envelope of an object A in an abelian
category is a monomorphism a: A — B satisfying the two following
conditions: (1) B is injective, (2) if f: B — C is any morphism such
that fa is a monomorphism, then # is a monomorphism.

In the category of Banach spaces and linear contractions, a mono-
morphism is just a ono-one morphism. If we compare the definition of
an injective envelope quoted above with a recent paper by Cohen [1],
then we infer that this definition is not suitable in the case of Banach
spaces and the word “monomorphism” should be changed in each place
to “a linear isometrical embedding”, i. e., to a submorphism in this
category.

Finally, one may ask the question whether a basic free object (or
a basic direct object) is really necessary in the definition of a super-
morphism (a submorphism) given above; one may conceive that any
generator (any cogenerator, respectively) will do as well. The following
example shows that the definition of a submorphism would be changed
to a non-equivalent one if we took another generator instead of a basic
direct object. Consider the category of completely regular Hausdorff
spaces and continuous maps. Let I be the closed interval [0, 1], let R
be the real line and let ¢ : X — 8X be the embedding into the Stone-
Cech compactification. Then

¢* = Hom(¢, I) : Hom(pX, I) — Hom (X, I)
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is onto and ¢* is a submorphism, whereas the map
¢" = Hom(g, R) : Hom (X, R) —~ Hom (X, R)

is not onto (unbounded continuous funections on X need not have con-
tinnous extensions to A.X).
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