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1. Harmonic functions. Much work has gone into extending the
clagsical Dirichlet problem to more general boundaries, spaces, and
operators (c¢f. Bauer [1], Brelot [2] and [3], Stampacchia [19]).

In contrast we will consider the case of smooth boundaries with
(Schwartz) distribution boundary values. The Dirichlet problem for
harmonic funetions and distribution boundary values can be treated
with operator techniques (cf. Lions [15]). We will, however, rely on
methods based on kernel representations, a technique which was widely
used — for special domains and different purposes — in Bremermann [8 ]
(cf. also Bremermann [T7]).

Distribution boundary value problems occur in fact — if not in
name — already in eclassical problems of mathematical physics: The
potentials of a “point charge,” a “doublet,” and a “double layer.”

We consider regions £ in Euclidean space E" whose boundary 92
is a real analytic manifold. Classically, there exists a kernel k(x, &) such
that

h(@) = [k(@, &b(£)do;

o2

is the solution of the Dirichlet problem (for continuous boundary values
b(&) on 02, dw, the surface element of 02 induced by the metric of E").
For fixed £¢02 the kernel is harmonic in 2.

9. Distributions on 92. Let 2(02) be the space of () functions
with convergence defined as follows: Let

§P1+ P

D)= ————,
ot . .othn

p; = 0,1t local coordinates. A sequence {gn) of (C*) functions is said fo
converge in the sense of @ if and only if the sequence of derivatives (D} pn>
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converges uniformly on any compact set in any local coordinate patch.
Let 2'(0£2) denote the dual space. We call its elements distributions on
0f2. Locally the distributions on 92 coincide with Schwartz distribu-
tions 2’ (E").

For e, (€00, the kernel k(x, &) is a (C*) function (cf. Courant-
Hilbert [9]). Given Te2'(02) we form T*(z) = (T:, k(z, &)>. T*(x)
is a harmonic function in 2. This can be seen by differentiating 7™ (x):

—_—
0 r* Ah;)—T*
0x; Ah?-->0 Ahy

e
:AI;EEG (Te, [k(w+Ahy, &) —k(x, &)1/ AR,

P :
where Ah; = (0, ..., 4k, ..., 0). The difference quotient for k converges
in the sense of .@’(G.Q) to 0( y £))[02;. Thus OT* (x) = <T¢, O k(, £)) =0,
since k is harmonie.

The function 7™(x) assumes the boundary distribution in the follow-
ing sense: Approximate 02 by homologous surfaces S, in 2 that are
analogously parametrized: For every test function ¢e2(02) we have

im [ T*(2)g(2)do, = (T, p).

This follows by converting f T*(z)p(2)de, into (T, f (@) k(x, &)dw,)

by an argument analogous to "Bremermann [8], p. 49
Now

fqo k(x, §)dw, — (&)

in the sense of 2 convergence. (The argument is analogous to [8], p. 46,
taking into consideration that k(x, &) is the normal derivative of the
Green’s function of 2 and the fact that the Green’s function is symmetric
in z and &.)

Thus

i fqo (@, &)dwgy — <T, ¢>.

Thus the restrictions of 7*(x) to the homologous surfaces S8, converge
to 7' in the topology of 2.

Examples. For dimension 2 and 2 the upper complex z-plane,
z = w-+1iy, we have the kernel k(z,¢) =y/z|¢—{[*>. As “homologous
surfaces” we can take lines parallel to the x-axis.
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For the unit disk, using polar coordinates, we have the Poisson

kernel
1 1—7r2

27 1—2cos(d—vp)4r?2’

The 8, may be taken as concentrix circles of smaller diameter.

3. Plurisubharmonic functions. In a previous paper [6] it was
shown that the Perron-Carathéodory method when applied to continuous
boundary values prescribed on the Silov boundary of a pseudo-convex
region leads to a plurisubharmonic solution. Goérski [12] and Siciak [16]
subsequently have carried the methods further. Gorski [11] and Siciak [17],
[18] also have applied Leja’s method of extremal points to this problem
(cf. Leja [13], [14]).

There remains the problem of the uniqueness of the solution of the
generalized Dirichlet problem. For special cases some results are known
(cf. Szmydt [20]).

The Dirichlet problem for plurisubharmonic functions and distribu-
tion boundary values, however, is largely unsolved. Consider a strictly
pseudo-convex region £ in C" which, as a region in E*", satisfies the con-
ditions of section 1. The Silov boundary, in this case, coincides with the
topological boundary of Q. (Note that any region of holomorphy can
be approximated by strictly pseudo-convex regions with real analytic
boundary, Bremermann [4] and [5].) The extremal plurisubharmonic
solution of the continuous boundary value problem, in general, cannot
be represented by means of a kernel. Let @(b,, 2), ®(b,, ) and D (b, +b,, 2)
be the extremal plurisubharmonic solutions of the boundary values
by by, and b,-1-b, respectively. @(b,,2) D (by,2) is a solution of the
boundary values b,-4-b, but it is not necessarily extremal: @(b,,z)--
+@(by, 2) < D(by+D,, 2). It is easy to give examples where the inequality
occurs. If @ were represented by a kernel, it would be additive. It is
not known whether the extremal golution of continuous boundary values
is continuous (}).

While we have shown that there is no kernel for the extremal solu-
tion there could still be a kernel that would give some plurisubharmonic
solution, not necessarily extremal. This is not the case. There is no kernel
k(z, &) on Q%02 such that for a,rbitrary continuous boundary values b(z)
the function @(z) = f k(z &)dw, is plurisubharmonie in 2 and assum-

es the boundary value% b(z). If this were the case, then also the function

f k(z (&)]dew;

() Mr. J. Walsh (Stanford, Calif.) has shown that the answer to this problem
is affirmative (unpublished) (Added in proof).
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would be plurisubharmonic and consequently @(z) would be plurihar-
monic. This is a contradiction; it is well known that not all continuous
functions b(&) on 92 are boundary values of a pluriharmonic function in Q.

Since there is no kernel, the method of section 2 is not applicable
in order to obtain the solution of a distribution boundary value problem.
Instead one could apply the Perron-Carathéodory method: Consider the
family of all plurisubharmonic functions that are (in a sense to be ex-
plained) less than or equal to the given distribution.

For this purpose we consider distributions that are bounded below
in the following sense: There exists a constant € such that (€, ¢> < (T, ¢)
for all non-negative test functions. Then 7'—C is a non-negative distri-
bution, and non-negative distributions are non-negative measures (Fried-
man [10], p. 51). Thus we are in effect considering the Dirichlet problem
for measure boundary values. Without loss of generality, we will consider
non-negative measures.

Let # be the class of all functions that are plurisubharmonic in 2
and less than or equal to the harmonic solution h(z) of the boundary
value problem. Let V(z) be the upper envelope:

V(2) = lim sup (sup U(2')).
22 UeF
This function is plurisubharmonic since # is bounded from above by
h(z) and thus is bounded from above on every compact subset of 0.
Since the constant 0 belongs to #, we have V(z) = 0. It is not known
whether the function V' (z) assumes the boundary measure (in the same
sense as h(z).)

Acknowledgement. The author is indebted to J. Siciak for val-
uable comments and suggestions.
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