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ON FACTORIZATION OF MAPS THROUGH X
BY

A. BLASZCZYXK anxp J. MIODUSZEWSKI (KATOWICE)

All spaces are Hausdorff and all maps continuous. Let tx: X < X
denote H-closed Katétov extension of X (Katétov [4]). Amap f:X - Y
will be said to be T-proper iff there exists (in consequence, unique) a map
7f: tX — 7Y completing the diagram

XcX

(1) B
YcYX

If, in addition, f maps the remainder into the remainder, i.e. if
tf(rX—X) c tY— Y, then f will be said to be z-perfect, in analogy to
those maps in the diagram of the Cech-Stone compactification which
behave in the same way and which are usually called perfect (or g-perfect).
It is known from Henriksen and Isbell [2] that f is perfect iff f is closed
and f~'(y) is compact for each ye¢Y. By the definition, r-perfect maps
are precisely those which preserve H-closedness under counter-images,
i.e. such that X is H-closed whenever f: X — Y is onto and Y is H-closed.

The aim of this paper is to give topological (non-diagrammatical)
characterizations of z-proper and t-perfect maps. A necessary condition
for a map to be z-proper was given by one of the authors and L. Rudolf
in [5]: T-proper maps are proper in a sense defined in [5] (see also Section 1).

And a sufficient condition was given by Herrlich and Strecker [8]:
semi-open maps in a sense of [3] (see also Section 1) are t-proper.

Clearly, t-perfect maps are z-proper, but the converse is not true:
each map f: X — Y into a compact space Y is z-proper (the fact known
since Katétov’s paper [4]), but such a map is not z-perfect unless X is
H-closed.

One of characterizations of r-perfect maps given below is similar
to that of [2] for perfect maps, another is expressed in terms of ultra-
filters and is more convenient for technical reasons. Also for t-proper
maps two characterizations are given, one similar to that of [5] and another
expressed in terms of ultrafilters.
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It is an easy consequence of the definitions that r-proper as well
as t-perfect maps form subcategories of the category H of all Hausdorff
spaces and. their continuous maps. If we restrict ourselves to the category H'
of all z-proper maps of Hausdorff spaces, then the Katétov extension
leads to a functor v: H' — HCL from H' into the full subcategory of H’
including all H-closed. spaces and 7 is a reflection, i.e. 7 is an adjoint
functor to the embedding (: HCL < H'. Moreover, H' is the greatest sub-
category of H having this property with respect to the Katétov extension
(see a note in [5], p. 22). Herrlich and Strecker proved in [3] that in the
subcategory of H consisting of all semi-open maps the Katétov exten-
sion also leads to a reflection.

1. t-proper maps. In [5] were studied maps f: X - Y, called there
proper, enjoying the property

(2) ifyeV < XY and V is open in Y, then there exists V', open in Y,
such that yeV’ and Int f~'(ClV') < CLf~ (V).

It was proved in [5] that, in the case of Y being H-closed, proper
maps f: X - Y coincide with those for which the diagram

Xc1X
3) 1
y*"

can be completed. This means that for maps into H-closed spaces
T-proper maps coincide with the proper ones.

For arbitrary Y only one implication holds; namely, each z-proper
map is proper (see [5], 4.4 on p. 21, and 3.1 on p. 18). The converse is
not true: an example of [5], p. 22, shows that there exists a proper em-
bedding X = Y such that the composition X < ¥ < 7Y is not proper;
in consequence, X c Y is not z-proper. This example shows also that
proper maps do not form a category (dense embeddings are always
proper). It can be modified in a way that X — Y becomes onto.

Example. Let X be the rectangle {(z, ¥): —1<or<land0<y<1},
and let Y be the ‘‘left half”” of X consisting of points with z < 0. If
f: X - Y is retraction (x, y) — (0, y) for # > 0, then f is proper, because Y
ig regular.

We proceed to show that composition g: X 1. ¥ < vY is not proper.
To do this, let netY — Y be an ultrafilter in Y which is without adherence
points (1) and is an extension of the filter consisting of all regularly open
subsets of Y containing open segments (0, a) of y-axis with & > 0. If
U’'en, then Cl U’ meets the y-axis in a set having non-empty interior

(1) Ultrafilter means always ultrafilter in the family of all open subsets of the
space; 7 i8 an wultrafilter without adherence points if ( \{C1V: Ven} = O.
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J (U’) relatively to the y-axis, because in the other case the set Y—Cl1 U’
would be in %, and this is impossible, Y —Cl U’ being disjoint with U’.
Hence; if U’ ey, then the set f~'(ClU’), being equal to the set g~'(Cly{U’ U
v {n})), meets the ‘‘right half”’ of X in a set baving a non-empty interior
(0,11 xJ(U')in X. The set U = {(z, y)eY: x*+y2 < 7% 2 < 0 and y > 0},
where r is a positive real number, is a member of #. The set Cl g-2(UuU{y})
contains no points with # > 0, Thus Uu{y} is an open neighbourhood V
of 5 such that there does not exist a neighbourhood V' of s for which
formula (2) holds. This means that g is not proper.

Note. The map f in the example is perfect, because it is closed and
its counter-images of points consist of closed intervals [0, 1] or points.
Thus f is perfect and onto but not z-proper. The existence of such a map
contradicts a result of Veli¢ko (see [6], Theorem 1) who claimed that
if f is perfect and onto, then it is z-perfect(?). In Section 2 we shall give
yet another example to this effect. See also our theorems below.

THEOREM 1. A map f: X — Y is v-proper iff it is proper and

(4)  for each ultrafilter n in Y without adherence points and each Ve
there exists V'en such that Intf '(ClV') « CLF (V).

Note. Of course, if Y is H-closed, (4) is superfluous.

Proof (of the lacked implication). According to a theorem of [5]
it is sufficient to prove that if a map f: X — Y is proper and satisfies
condition (4), then the composition ¢: X 1 Y 1Y is proper.

To do this take neW < 7Y, where W is open in tY.

If neY, the set V = YnW is an open neighbourhood of » in Y.
Since f is proper, there exists V', open in Y, such that e V' and Intf~'(C1 V")
< CLf (V). Since Y is open in 7Y, V' is open in Y. Therefore (2) is
satisfied at » by the composition g: X L yc Y, and this means that g
is proper.

And if netY— Y, the sets V = YnW, where W run over all open
neighbourhoods of # in 7Y, form an ultrafilter in ¥ without adherence
points (this ultrafilter is, in fact, equal to » itself). By (4), for a given
Ven, there exists V'en such that Int f~'(ClV’) = Clf~'(V). Define
W' = {9}uV’. Then we have YnW’' = V' and, therefore, Cl, V' = Yn
NClyW’'. Now proceed as in the preceding case.

THEOREM 2. A map f: X — Y is v-proper iff for each ultrafilter &

in X there is .
({Clyf(U): Uet} #0O

or if there exists an ulirafilier n in Y without adherence points such that
Vnf(U) # D for each Ven and each U eé.

(2) On p. 1255 of [6] there is an erroneous proposition “the family ¢ = ... is
a centered one”
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Note. Condition on f can be expressed shortly in terms of Katétov
extensions as follows: ({ClL,yf(U): Ue&} # O for each ultrafilter & in X
Therefore Theorem 2 follows from the following.

THEOREM 2'. The triangle diagram (3) can be completed for a map
f: X - Y (we do not assume here that Y is H-closed) iff for each ultrafilter &
in X there is

(5) M{Clyf(U): Ues} + Q.

Proofof Theorem 2'. I. If there exists a map fi such that fuoryx = f,
then let & be an ultrafilter in X. Then

M{Clyf(U): Ue&} = M{Clyfe (U): Ueé}
S M{fe (ClxU): Uek} o fu (M{Cl.x U: Ueék}),

the last set in parentheses being non-empty.

II. Assume that (5) holds for each ultrafilter £ in X. Define f, (x) = 2
for x¢X. It remains to define f, (&) for £er X — X, i.e. for ultrafilters &
in X without adherence points.

The set [&] = M{Clyf(U): Ueé} is non-empty by the assumption.

If ye[£] and if V is an open neighbourhood of y in Y, then for each Ueé
there is Unf~'(V) # @ (because of ye Clyf(U)), which implies f~!
In consequence, [5] is'a one-point set: in fact if 4, and. y, are in [£] and
Y, #~ Y5, let ¥V, and V, be disjoint open neighbou’rhoods of these points;
then f~!(V,) and. f~'(V,) are both in &, but f~(V,)nf~!(V,) = @; a con-
tradiction.

Define f. (&) to be the point [£].

Clearly, fiotx =f.

To prove that f, is continuous, let V be open in ¥. We have f, (V)
= f"Y(V)UR, Where R = {fetX—X: fu .f)eV} The set f~ (V) is
open in X and f~!'(V)e& for each £¢R. Thus f~!(V)UR is open in the
topology of the Katétov extension tX (recall that the sets {£}UU, where
Ueé, form an open base in 7X at § ferX—X).

Note. Theorem 2 implies that semi-open maps, i.e. maps f: X - Y
such that Intf(U) # O for open U, are z-proper — a fact known from [3].
On the other hand, however, there exist z-proper maps which are not
semi-open, e.g., each not semi-open map into a compact space.

2. 7-perfect maps. A (closed) subset A of X will be said to be far
from the remainder, shortly f.f.r., if for each ultrafilter & in X without
adherence points there exists Ueé such that AnCly U =@.

Obviously, each compact subset A of X is always f.f.r. But there
exist H-closed subspaces which are not f.f.r.

Example. In the known example of a (countable) minimal Haus-
dorff space due to Urysohn (and often quoted in the literature; see e.g.
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[5], p. 25) let us remove one of two non-regular points. The H-closed
“half” containing the other non-regular point is not f.f.r.

THEOREM 3. A map f: X - Y is t-perfect iff it is v-proper and
(6) [ Yy) is f.L.x. for each yeY,
(7)  f(A) 48 closed for each regularly closed subset of X.

Proof. I. Suppose that f is z-proper and satisfies (6) and (7). Let
7f: X — 7Y be a map completing diagram (1). Let &¢vX — X and suppose
that tf(£) =ye¥Y. Then Unf (V) # @ for each open neighbourhood V of
y in Y and for each Ue&. Since f~'(y) is £.£I., there exists Ue & such that

(8) 7 ynClx U = 0.

We have Vnf(U) # @ for each V, whence yeClyf(U). But Clyf(U)
= f(ClxU), since ClxU is regularly closed. Thus yef(ClxU), contrary
to (8).

II. Let f be z-perfect. To prove (6), let yeY and ferX—X. Let
n = tf(£). By the assumption, ne7Y —Y. Consequently, there exists W,
an open neighbourhood of % in Y, such that y¢ Cl,; W. Hence f~'(y)n
N(zf) " (CL,y W) = @, which implies that f~'(y)NCl,x(zf)" (W) = @ and,
a fortiori f~(y)NClx((zf)" (W)nX) = 0. But (zf) ' (W)nXe&, and this
means that f~'(y) is f.f.r.

To prove (7), take a regularly closed subset A of X. Then Cl,xA
is H-cloged. We have f(A) = (¢f)(Cl,x4)nY and the last set is closed
in Y, since (zf)(Cl,xA4) is closed in 7Y as an image of H-closed set.

Note. There is a difference in the conditions for z-perfect and g-perfect
maps. In order for a map to be' -perfect conditions like (6) and (7) are
sufficient, but in the case of r-perfect maps the additional condition
that f is t-proper cannot be omitted. Recall that f is z-proper iff it is
proper and satisfies (4). We ghall show that none of these conditions
can be omitted. |

The example in Section 1 shows that (4) cannot be omitted: the map
constructed there is proper and satisfies (6) and (7), while being not
r-proper and, in consequence, not r-perfect.

Algo the condition that f is proper cannot be omitted.

Example. Let ¥ be the square {(z,¥):0<2<1 and 0 <y <1}
in which the bottom side (with ¥y = 0) is a discrete subspace, the rest
of Y having the topology of the plane. The space Y is H-closed. Let X
be the disjoint union of Y and of a discrete space consisting of points
(x¢, —1), where 0 < < 1, and let f: X — Y be a retraction (z, —1) — (2, 0).

Since Y is H-closed and X is not, the map is not r-perfect. It is
eagy to verify that f has properties (6), (7) (it is even g-perfect and onto),
and (4). Clearly, f is not proper.

4 — Colloquium Mathematicum XXIII. 1
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Note. Unfortunately, it is impossible to improve the theorem with
“iff”, But perhaps it is worth to mention that one of the implications
in Theorem 3 may be strengthened.

Let us call a (closed) subset 4 of X conditionally H-closed iff Cl x A
is H-closed (the definition may be expressed in terms avoiding 7.X).
Clearly, each regularly closed subset is conditionally H-closed. It is
easy to see that r-perfectness implies

(7)  f(4) is closed for each conditionally H-closed subset of X,

a condition which is stronger than (7).

THEOREM 4. A map f: X — Y is t-perfect iff for each ultrafilter &
in X without adherence points there exists an wlirafilter n in Y without
adherence points such that for each Ue& and Ven there is

(8) F(O)nV #9.

Proof. I. If {et X — X, choose nerY — Y for this & according to the
assumption. Define zf: 71X — tY by setting tzf(x) = f(x) for xeX and
tf(§) = 5 for ferX—X.

Clearly, tf(X—X)c Y- Y.

To prove the continuity of tf, let us note that Unjf~'(V) # @ for
Ue& and Ven, which follows from (8). Hence, if Ve, then f71(V)eé.
Let now Ve{n} be a base neighbourhood of £ in tY. Then (zf) " (Vu{zn})
is an open neighbourhood of & in 7X, and this means that zf is continuous
at £etX— X. The continuity at reX follows from the continuity of f
at x in virtue of the fact that X and Y are both open in their Katétov
extensions.

II. Let f be t-perfect and let zf exist. Take £(erX— X. We have
7f(§)erY — Y. We shall prove that formula (8) holds for each Ue& and
each Ven = tf(£). In fact, (zf)""(Vu{n}) is an open neighbourhood
of £ in vX. According to the known properties of the Katétov extensions,
the set Xn(zf)~'(Vu{y}) is a member of & But, since f is z-perfect,
this set is equal to f~! (V). Therefore, f~(V), being a member of &, intersects
each Ue¢. Hence, Vnf(U) # 9.

Note. In fact, it was proved that if f is z-perfect, then # is uniquely
determined by &, since n = zf(£) and tf is uniquely determined by f.

3. Non-extendable maps. A map f: X - Y will be said to be non-
extendable iff there does not exist an extension of f to a map f: Z - Y
such that f(Z) = f(X), where Z contains X as a dense subspace; such
extensions f will be called image preserving. Clearly, in the definition of
non-extendable maps it suffices to consider only spaces Z of the form
Xu{r}, where z¢X.
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It is known from [1] that in the category of all completely regular
spaces and their continuous maps the non-extendable maps coincide
with the perfect (= g-perfect) ones. Here we shall prove that in the cate-
gory H' of all z-proper maps of Hausdorff spaces the non-extendable
maps coincide with the r-perfect ones.

LEMMA. A map f: X — Y is non extendable iff

(9) there does mot exist an image preserving extension of f on XU{§},
where EetX— X and the topology on XU{&} is induced from tX.

Proof. Clearly, if f is non-extendable, then (9) holds. Now assume
(9) and suppose that f is not non-extendable. Hence there exists an image
preserving extension of f on a space Z = Xu{x}, where xv¢X and X
is dense in Z. The family of intersections with X of all open neighbourhoods
of # in Z forms a centered familly in X. Let & be an ultrafilter generated.
by this family. Clearly, it is an ultrafilter without adherence points.

Hence there exists a map Xu{&} %> XU{x} which is equal to the identity
on X and satisfies g(&) = 2. Consequently, there exists an image preserving
extension of f on XU{{}. A contradiction.

THEOREM 5. If a map f is t-proper, then it is non-extendable iff it is
T-perfect.

Proof. I. Let f: X -~ Y be non-extendable. Since f is z-proper,
there exists 7f: X — 7Y completing the diagram (1) for this f. Suppose
that f is not t-perfect. Hence there exists a point éerX— X such that
1f(£)e Y, and the map (zf)| XU{é} is an image preserving extension of f.
A contradiction.

II. Let f: X — Y be z-perfect. Suppose that f is not non-extendable.
Then, by the lemma, f has an image preserving extension on XuU{¢},
where et X — X and the topology on XuU{é} is induced from zX. But f
i3 z-proper and therefore there exists zf completing the diagram (1) for
this f. Since f is t-perfect, there is 7f(£)e 7Y — Y and the map (zf)| XU{§}
is an image preserving extension of map X L ycqy. Clearly, this
extension is different from the extension of the same map given before
according to the lemma. We get a contradiction, because there exists
at most one extension for a map defined on a dense subset.
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