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(with X = X"0/02", 0, = 0/0x") and is the right-hand member of equation
(3) in Slebodzinski’s celebrated paper [10]. This expression is generally
referred to as the Lie derivative of the tensor A4 relative to the vector X“.
In what follows we shall show that it has the structure of a generalized
intrinsic derivative which is compounded as an extensor contraction of
an extensor F (derived from the given tensor) with certain extensors
of the types g3, and g2 which are derived from the components of the
given vector field. These components are denoted by V* in the present
paper and by X" in (I).

1. Notational and extensor preliminaries. We assume that we have
given an N-dimensional space 8, which bears a coordinate system =
with coordinates a1, 2% ..., "V and the collection of class C™ coordinate
transformations (M =>=1)

(1.1) T =7 (r) =2 (2, 28 ...,2"), 2% =),
of tensor analysis. Relative to the set of parametrized arcs 2% = z°(t)

in S, which are of class 0¥, we have the extended coordinate transfor-
mation

( =" = 2%(T), =z (x),
v = X%z, " = Xhx'?,
(1.2) ' = X°F T4+ X077E°, T = Xr+ X2 %",
M a =(M) =(M)r __ M
\g¥De — xog0Or 4 g = X1 gpMey
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with
r & gat, x° L ostow, X Eozrjeat, Xo L oxeoz,
w(M)a = dM.’Da/dtM.

Because of the particular polynomial structure of (1.2) in the z-primes
(#'%, "% etc.) and the Z-primes, the quantities X2 and X defined by

xo, L oz0r/oz % and X L ox /970",
respectively, of course exist and, in addition, satisfy the formulas
(1.3) X% = (X e>a; X7 = (X779, a>o.

Here (2) is a binomial coefficient and there is no summation in (1.3).
Also it should be noted that X%, = 0 if a > p. In the computation of
X all variables in the set x, #’, ..., #* are held fixed except the dif-
ferentiation variable (®* and the analogous statement holds for X of
course. For further details see [2], p. 215, and [4], p. 65-67 and 92-94.

The capitals X’s bearing doublet indices such as aa and gr are the
multipliers of the components in the extensor transformation law. The
general pattern of this law may be inferred from the special cases

(14) gas = gﬂerXUs’ gﬂb - gasXaXﬁln
(1.5) g° =g X: X5, g¥ =g XL X%,
(1.6) EGw = J°(@/7) By X X X% Xy

with repeated Greek and Latin indices summed over their ranges from 0
to M for the Greek and 1 to N for the Latin. The symbol J(x/z) denotes
the Jacobian determinant.

Here it may be noted that when the Greek letter of a doublet super-
script on a component symbol is assigned the minimum value zero, the
superscript becomes a tensor index or, in other words, the zero superscript
provides a tensor rank. Similarly, a tensor rank is obtained by assigning
the Greek letter of a doublet subscript the maximum value M. To illus-
trate, from (1.5) we have

gr _ gngaon — gObXan
(since X3 = 0 for g > 0 and Xy; = Xj) while, according to (1.4),
Ime = 9 Xa X% = 930 Xo X3t = 93 X0 X,

For more details on the extensor transformation law see [2], p. 260 -
-275, [4], p. 70-88, and [1].
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2. A generalized intrinsic derivative of a temsor. It follows from
certain general formulas for the construction of extensors from tensors
by differentiation with respect to a curve parameter ¢ (or it may be estab-
lished directly), that if (1) 7§ is a tensor of weight zero and of class C"
along an arc 2% = 2°(t) of class C', (2) M =1, and (3) B =0 if B
has more than one tensor index, Eg:: = T} if E has only one tensor
index, and E% = Ty if E does not have any tensor indices. To illustrate,
if T; is of the type contravariant order one, covariant order one and of
weight zero, and if in all admissible coordinate systems E = Ty, E%
=Ty, B}y = T3, Ejy =0, then Ej; is an extensor. For proofs see [2],
p. 276-279, [3], p. 332-336, and, for the general case, [9].

A slightly generalized intrinsic derivative IT of a tensor T;: can
be obtained by the contraction of the associated derived extensor E}j
with extensors of the types g%, ¢s%, M = 1. For example, in the case
of the tensor 7 in the preceding section, we have

(2.1) IT; = E359%.05° = E395.98° + Eosge 98" + E15 959"
= T39%.9° + T590. 95 +T5 g% 9.
In particular, if

9% =0, g6 =1{nt2% @*=26, g’ = —{L2"
then
IT; = Ty +Ts{&} e —Ta{t} ",

the ordinary intrinsic derivative.

In the case of the ordinary intrinsic derivative the product rule is
usually established by resort to geodesic coordinates. This rule, however,
holds in the more general case where the tensor ¢’s are Kronecker deltas
but the remaining ¢’s are not necessarily the two-index Christoffel symbols
{212°.. This fact becomes apparent on examination of the expansions
for some special cases.

These expansions may be regarded as consisting of two sets of terms.
The first set is obtained by assigning all of the Greek indices on E non-
-tensor values (1 for superscripts, 0 for subscripts) and produces the
term 7" which in the case T = UV ... is of course equivalent to U'V...+
+UV'...+. The second set consists of the sum of all of the terms obtain-
able by assigning one (and only one) of the indices on ¥ the tensor value.
Corresponding to U’V ... in the first set, the additional terms which are
needed to produce (IU) V... will appear in the second set. For example,
if T = U°V,, then we have ‘

IT} = E3595%.05% = (UVa+UV) 95982 + UV 490.95° + UV 495.9°
= (U°+U°%)Vo+ UV +Vags?) = LUV, +UIV,.
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Also, for T = U Ve, it follows that
ITF = Eif*giagegs
= U VP ULVY +(Ulgsa+ Uig) VP + UL Vogs, = (IUS)V® + ULIV.

3. Basic extensors in the Slebodzinski formulation. In the establish-
ment of the extensor character of the basic quantities associated with
the formulation introduced by Slebodzinski,.we shall necessarily have
to consider two coordinate systems. These will be denoted by x and z
and we shall associate index letters at the first of the alphabet with system
x and reserve letters at the last of the alphabet for system Z. In addition,
we shall denote partial derivatives by means of subscripts preceded, by
a semicolon (;), in particular, V% = dV*/0z", and VY = 0V?/ox”.

Two of the three extensors involved in the Slebodziniski formulation
differ remarkably in structure from those previously encountered in dif-
ferential geometry and mathematical physics. The formulation is given
by the following proposition:

THEOREM 3.1. Suppose that (1) R is a region of an N-dimensional
space which bears a coordinate system x and that P,(xg) 18 a point in R; (2)
Ve(x) is a contravariant vector field of weight zero and of class C' in R; (3)
C, is a parametrized arc, x® = x®(t), which passes through P,, is of class C!
along the part in R and is such that dx®/dt(P,, Cy) = V*(P,); and (4) the
coordinate transformations to be admitted are of class C®. It then follows
that the quantities h® and hj,, defined by

ar dar ar ar
(3.1) he = 0g,  hy = Vi k=65, ke = —V

with similar definitions in the other coordinatle systems, are extensor com-
ponents for P, C,.

Proof. We have given that in R, V* = V%X% and, therefore,
(3.2) VY = VL XX+ VXY, XS,
For P,, C,, V¢ =% and, therefore, for P, C,
Vixy = VXY, = X¥ = X,
since
oz a(VeXy)

Xl : —
O¢ e e
o |z’s tixed o V fixed

Consequently, we may write

By = Tl = BAXUX+ XX,
and of course
R = BEXGX:.
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Thus we have the extensor transformation equation
]’;/;u hdd X Xe

To establish the remainder of the theorem, we employ the identity
wXe = —X7X; Xy (which is a consequence of the relation Xy X; = 6%)
to convert (3.2) into

’ —VY = —ViX4X+ X5, yexe,
This equation may be rewritten as follows:
hyy = — Vi = b Xg X3+ X0, 83 Xy = he, X§ X35+ hi, X3 X5

Accordingly, 2% = k% X%X: and the proof is completed.

Examination of formula (I) given by Slebodzinski shows that it
is the complete extensor contraction of the extensors i of theorem 3.1
with the extensor E derived from A by parameter differentiation in ac-
cordance with the procedure given in section 2. The curve C, associated
with E must of course meet the requirement dxz®/dt(P,, Cy) = V*(P,)
with P, the point at which expression (I) is evaluated.

The essential points in the comparison of the structure of (I) with
the extensor contraction of the F (derived from the tensor A) with the
extensors h are revealed by the typical special case where the tensor A
is contravariant of order two and covariant of order two. The expansion
of this contraction is as follows:

Bre i hialfp b i3 = A+ Bl b b, iy B +
+ Beoa okl by B + B o3 i by g B+ B2 R o1y B 13

Here the term A% is obtained by noting that E}%S = A% and
that this particular F is contracted with Kronecker deltas only. In the
remaining terms, ki, = — V&, by = — V4, b = VS, and B2 = V% with
all the other h-symbols Kroneeker deltas. Thus the contraction at the
locality P,, C, is given by

(3.3)  ESLoRS M hICh® = AG Vi— AL Ve,— AL VI, 4 AV, + A VS,

which is in complete agreement with formulation (I) of Slebodziﬁski.
Because the only free indices in the extensor contraction are tensor indices,
it follows that formula (I) produces a tensor from the given tensor A.
Furthermore, since (I) is essentially a generalized intrinsic derivative
with g% = h® = 62 and ¢% = h% = 6%, it follows that the product rule
holds.

For different developments involving extensors and Slebodziniski type
formulations, particularly the Lie derivatives of extensors, see [5]-[7].



54 H. V. CRAIG
REFERENCES

[1] H. V. Craig, On tensors relative to the extended point transformation, American
Journal of Mathematics 59 (1937), p. 764-774.

f2] — Vector and tensor analysis, New York 1943.

{31 — On the structure of imirinsic derivatives, Bulletin of the American Mathe-
matical Society 53 (1947), p. 332-343.

[4] — Teoria ed applicazioni dell’analisi estensoriale, La Scuola in Azione (Nr. 13,
21 (1963-1964); Part I, p. 60-75; Part II, p. 77-132.

(6] Y. Katsurada, Specialization of the theory of a space of higher order II. On
the extended Lie derivative, Tensor (New Series) 2 (1952), p. 15-26.

[6] — On the functional tensor attached to an arc, ibidem 4 (1954), p. 16-27,

[71] — On a theory of generalized crossed extensors and the functional tensors attached
to a subspace, ibidem 5 (1956), p. 143-163.

[8] A. Kawaguchi, Die Differentialgeometrie hoherer Ordnung I. Erweiterte Koor-
dinantentransformationen und Extensoren, Journal of the Faculty of Science,
Hokkaido University, (1) 9 (1940), p. 1-152.

[9] P.S. Morey, Jr., Formation of extensors by differentiation of tensors, Tensor
(New Series) 22 (1971), p. 155-162.

[10] W. Slebodziniski, Sur les équations canoniques de Hamilton, Bulletin de

I’Académie Royale de Belgique, Classe des Sciences, 5 Série, 17 (1931), p. 864 -
-870.

THE UNIVERSITY OF TEXAS

Regu par la Rédaction le 4. 11. 1971



