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ON COMPACT HAUSDORFF SPACES
HAVING FINITELY MANY TYPES OF OPEN SUBSETS

BY

WITOLD BULA (KATOWICE)

Herein, a continuum is a compact connected Hausdorff space, fX
is the Cech-Stone compactification of a completely regular space X,
and X* is the remainder X — X of the space fX.

A point p of a space X is said to be a local separating point of X (shortly,
l.s.-point of X) if there exists a neighbourhood U of p such that U — {p}
= W,uW,, where W, and W, are open, disjoint and have non-empty
intersections with the component of U containing p.

Schoenfeld and Gruenhage [6] showed that the Cantor set is the
unique infinite compact metric space having only two topologically distinct
non-empty open subsets. In Section 1 of the present paper we show that
the Cantor set is the unique dense in itself compact metric space having
only finite number of topologically distinct open subsets or, as we say
shortly, having finitely many types of open subsets. This implies that every
non-degenerate metric continuum has infinitely many types of open sub-
sets and leads to the problem of the existence of non-metric continua
having only finitely many types of open subsets.

However, it seems to be interesting to solve first the problem of the
existence of non-metric continua having exactly three types of (non-empty)
open subsets. In Section 2 we prove that such continua are perfectly
normal. By a theorem of Juhész [2], there exists no non-separable per-
fectly normal compact Hausdorff space in the theory ZFC +Martin’s
axiom 4 negation of the Continuum Hypothesis. Hence, only possible
in ZFC examples of continua having only three types of open subsets
are the separable ones. However, we do not know of any such an example.
(P 1072)

The class of compact Hausdorff spaces having at most three types of
open subsets is much more wider than that having two types only: these
are dense in itself, totally disconnected and perfectly normal (see [4]).
As was noted by R. Frankiewicz, there exist non-perfectly normal compact
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Hausdorff spaces having three types of open subsets; the example of such
a space is given in Section 3.

I would like to thank Professor J. Mioduszewski for his valuable
advice and guidance during the preparation of this paper.

1. A characterization of the Cantor set. The following lemma is a par-
ticular case of theorem by Whyburn [6] (Theorem 9.2, p. 61).

1.1. Let G be a set of all 1.s.-points of a locally compact separable metric
space X. There exists a countable set F such that if p € G—F, then p has
a base consisting of open sets having only two poinis on the boundary.

COROLLARY. Hvery continuum of convergence of a locally compact
separable metric space X contains at most countably many l.8.-points of X.

1.2. Let X be a continuwum. If the set (X —{p})* is disconnected, then
p 8 an l.s.-point of X.

Proof. Let (X —{p})* = F,UF,, where F, and F, are non-empty,
compact and disjoint. Let W; and W, be open subsets of f(X — {p})
such that F; « W; and cl Wyncl W, = @. Shrink each of F, to a point
and call ¢ the quotient map. The space ¢(8(X — {p})) is a continuum if
p does not cut X or the union of two continua in the opposite case. Thus,
by Janiszewski’s lemma ([3], Theorem 2, p. 172), the component of ¢(W;)
containing the point ¢(F;) is non-degenerate. Now, shrink the points
q(F;) and ¢(F,) to a point and call » the quotient map. The space
rq(ﬂ(X —{p})) is homeomorphic to X and the point in r(q(Fl)Uq(Fz))
may be identified with p. So, if we put

U =rq(W,UW,) and W, =rq(W;—F,),

then according to the definition of an l.s.-point one can see that p is such
a point of X.

COROLLARY. If Py, ..., P,, Py #D; for i #j, are non-l.s.-poinis of
a continuum X, then the set (X —{py, ..., P,})* has exactly n components.

1.3. THEOREM. If a dense im itself compact metric space X has only
finite number of topologically distinct open subsets, then it is homeomorphic
to the Cantor set.

Proof. It suffices to show the total disconnectedness of X.

Suppose that X has a non-degenerate component and consider two
cases.

I. There exists an infinite sequence K,, K,, ... of distinet non-degen-
erate components of X. Let p, be a non-cut point of K,. Then the open
sets U,, U,, ..., where U, = X —{p,, ..., p,}, are topologically distinct,
since U, has exactly » non-compact components. A contradiction.
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II. The sets K,, ..., K, are all of non-degenerate components of X.
Let U be a closed and open subset of X such that

KicUc X—(K,v...UK,).

Consider two cases.

(i) The component K, is locally connected. Then for each positive
integer k we can find a set U, being open in K, and having exactly k¥ com-
ponents. Let W, be an extension of U, to an open subset of U. The set
W, has exactly ¥ non-degenerate components, so the sets W,, W,, ...
are open and topologically distinct subsets of X. A contradiction.

(ii) The component K, is not locally connected. Then K, has a continuum
of convergence and, by the Corollary to Lemma 1.1, there exists a sequence
Pi1y Psy ... of distinet non-l.s.-points of K,. By the Corollary to 1.2, the
sets F,, Fy,..., where F, = K, —{p,, ..., p,}, are topologically distinct
(since Fy,F,,... are topologically distinet). Consequently, the sets
U,,U,,..., where U, = U—{py,...,p,}, are topologically distinct,
since F,, is a union of all non-degenerate components of U,. A contradiction.

2. Continua having three types of open subsets. Let X be a continuum
having three types of (non-empty) open subsets. One of these sets is X
itself. Among non-compact sets there are connected and disconnected
ones; the existence of connected ones follows from the generalization of
Moore’s theorem (see [1], Theorem 2-18, p. 49) about the existence of
non-cut points in continua; the union of two disjoint open sets is an example
of a disconnected open set.

2.1. If U is a connected open subset of X, then U i3 dense in X.
Proof. Assume that X —clU # O and consider two cases.

(i) There exists an open component V of X —clU. Then, taking
arbitrarily three disjoint open sets V,, V,, V,, one can see that the set
V,uV,UV, is open, disconnected and topologically different from the
set UUV which has only two components.

(ii) The set X —ecl U has no open component. Then X —ecl U is discon-
nected and topologically different from the disconnected open set
UuU (X —cl U) which has an open component, namely U.

2.2. The continuum X is perfectly normal.

Proof. At first we prove that every disconnected open subset of X
is an F -set. This will be shown if we construct a single disconnected
open F -set. Let F be a closed proper subset of X having a non-empty
interior. Let U,, U, # X, be an open neighbourhood of F. Take U,,
an open neighbourhood of F, contained with its closure in U,. We get by
induction a sequence U, > c¢lU, o> U,... of open neighbourhoods of F,
the intersection of which is a proper closed subset F of X with a non-empty
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interior. Thus X — ¥ is an open ¥ -set and, by 2.1, X — F is disconnected.
Hence, all disconnected open subsets of X are F,-sets. To see that so are
the connected ones, assume that U is one of them and take a closed set
F having a non-empty interior and contained in U. The set U — F is open
and, by 2.1, is disconnected. Thus it is an F -set. But U = (U — F)UPF,
go also U is an F -set.

3. Example of a compact totally disconnected non-perfectly normal
Hausdorff space having three types of open subsets (given to the author
by R. Frankiewicz). Let D be a given set of cardinality N, and let
Po be a given point. Write

Xo={py and X,=X,_,xDforn=1,2,...

The set X = |{J{X,|n =0,1,...} has a partial order. Namely,
we assume p < ¢ iff there exists a sequence {go, ..., ¢,,} such that p = q,,
q = q,, and g; € {q;_,} X D. Let C be the set of all maximal chains in X.Put

Y = XUl
and ,
Up) ={qeX|p<q}V{ceC|peC} for all peX.

We define topology on Y assuming that the sets U(p) are closed and
open in Y for all p € X. Notice that Y is compact Hausdorff zero-dimen-
sional space and each open subset of Y is homeomorphic either to Y or to
the complement of the point p € X, or to the complement of the point
ceC.
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