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ON THE CONTINUITY
OF CERTAIN NON-ADDITIVE SET FUNCTIONS

BY

L. DREWNOWSKI (POZNAN)

1. By no means non-additive set functions arc¢c something unusual
in mathematics: outer measures, semi-variations of vector measures,
capacities are widely known examples of such functions. However, most
of the naturally arising non-additive set functions satisfy some sub-
additivity conditions which fairly well recompense the lack of additivity.
On the other hand, they usually play only an auxiliary role in arguments
concerning additive set functions (i.e. measures). Thus, for example,
the use of variations, semi-variations, etc. in the theory of vector measures
is comparable with that of semi-norms or quasi-norms in the theory of
topological linear spaces and continuous linear mappings. This point of
view is quite explicitly present, e.g., in the author’s works (cf. [4]). Much
attention is paid there to develop a theory of submeasures, i.e., sub-
additive monotone non-negative set functions on rings of sets. However,
the chief motivation for this is that the submeasures are used as 4 con-
venient tool in investigating some properties of measures, especially
those which can be expressed in terms of continuity with respect to the
Fréchet-Nikodym (FN-) topologies of type I'(u).

In recent years several authors considered non-additive set functions,
both real and group-valued, which were only assumed to be monotone
or to satisfy conditions of Lipschitz type (see [1], [5] and the references
given there, [3]).

Our main purpose is to indicate a method of investigating such
functions, based upon a quite simple observation that they can be con-
gidered as functions continuous with respect to suitably chosen sub-
measures. In consequence, a number of results concerning non-additive
.8et functions, originally proved by direct methods, can easily be derived
from the theory of submeasures. We also answer in affirmative a problem
posed by Dobrakov [3].

2. The following terminology and notation will be used without
any further reference.
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Z denotes a ring of subsets of a set 7. All set functions defined on 2
are assumed to vanish at @. R, = [0, o), and R, = [0, oo]. A set function
u: 2R, is said to be

monotone if A ¢ B implies u(A) < u(B);

subadditive if AnB =@ implies u(AUB) < u(A)+ u(B); .

exhaustive if u(E,) — 0 for every (infinite) sequence (E,) of disjoint
members of #;

order continuous (at @) if u(E,) - 0 for every decreasing sequence
(E,) = £ with empty intersection (we denote this by E,\O).

The notions of exhaustive and order continuous set functions with
values in topological groups are defined similarly.

If n: # -~ R, is monotone and subadditive, it will be called a sub-
measure on Z (see [4]). To each submeasure » on # there corresponds
an FN-topology I'(n), determined by the distance function (écart) d,
on %, defined by :

d,(4,B) =7(4 AB).

The reader is referred to [4] for a more detailed discussion of FN-
-topologies, submeasures, etc. We shall usually write shortly (%, n) instead
of (.@, I'(n)).. '

If u is a set function on %, we write u < 7 to indicate that u is con-
tinuous on (%, n) and then say that u is z-continuous. Suppose that u,
and u, are set functions on # determining FN-topologies I'(u,) and I'(u,),
respectively; then we say that u, and u, are equivalent and write u, ~ u,

if I'(u,) = I'(us,).

3. In [3] Dobrakov has initiated a theory of set functions which
we shall call D-submeasures (submeasures in [3]), intended to be — in
his own words — “a non-additive generalization of the theory" of finite
non-negative countably additive measures”. These D-submeasures are
not subadditive in general, but we show in the sequel that, except possibly
for some less important cases, every D-submeasure u i8 equivalent to an
order continuous (subadditive!) submeasure 5 such that, in addition,
n <.

Dobrakov considers monotone set functions u: # — R, having the
property he calls subadditive continwity (sc) or the stronger property of
uniform subadditive continuity (use):

(sc) For every A e # and > 0 there is a 6 > 0 such that

(%) p(AUB) < p(A)+e  and p(d)<pu(ANB)+e
whenever u(B) < 6.

(use) For every &> 0 there is a 4> 0 such that (*) holds for all
AeZ and all Be# with u(B) < 4.
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If 4 is monotone, order continuous and satisfies (sc) (respectively,
(use)), then it i§ called a D-submeasure (respectively, a uniform D-sub-
measure) on X.

It is easily seen that (sc) and (usc) can be given the following more
suggestive forms:

(sc) If A e, (A,) = # and u(4d A A,) - 0, then

p(d,) —p(4),
or

VAe®R,Ve>0,36>0,VO0eZ: u(AAC)< 8 = |[u(4)—u(C)| < s.
(use) If (4,), (B,) = # and u(4, A B,) >0, then

#(4,)—pu(B,) -0,
or

Ve>0,36>0,VA,BeZ: u(AAB)< 8 > |u(4)—pu(B)| < ¢.

Suppose that u: £ - R, is merely monotone (and x(3) =0 as
always). Then we may associate with it a uniformity W (xz) on %, a base
of which is formed by the classes

Us = {(A,B) e RXxR: n(AAB)< 8}, 6>0.
Clearly, U (u) is semimetrizable, and since each %, is invariant, i.e.,
’ (A,B)e#, > (AAC,BAC)c%,,
there exists a semimetric d on # generating U (u), which is also invariant:
d(A,B) =d(4AAC,BAC) forall A,B,CeZ.

Let I'(1) denote the topology on # associated with U(u) (er with d).
Clearly, I'(u) is the weakest invariant topology on #£ with respect to
which x is continuous at @, that is '

(B, >@ in I'(n)) < (u(B,) —>0).

Note also that E, > E in I'(y) iff u(E, AE) — 0.

3.1. PrROPOSITION 1. Let u: # —~ R, be monotone. Then

(i) I'(u) i8¢ an FN-topology, t.e., there exists a submeasure n on
such that

| u(B,) > 0 < 7(B,) >0,
iff u satisfies the following condition:
(ac) If u(A,)+u(B,) -0, then u(A,UB,) — 0.

(ii) u is continuous on (gi’, I'(w)) iff u satisfieé (se).
(iii) u is uniformly continuous on (&, I'(u)) iff u satisfies (usc).
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Proof. (i) The classes
Uy(D) = {4 eR: pu(4)< 6}

form a base of I'(x)-neighbourhoods of @, and each of them is solid (or
normal):
.B c A E%&(ﬂ) = B E%,(ﬂ).

Hence, by [4], 1.5, a necessary and sufficient condition for I'(u) to
be an FN-topology is that for every ¢ > 0 there exists a 6 > 0 such that

A, B eU,D) > AUB € %,(9).

This is evidently equivalent to (ac). Since I'(u) is semimetrizable, \
I'(p) is an FN-topology iff there is a submeasure » for which I'(x) = I'(»),
by [4], 2.3, and. such a submeasure can be defined by

n(E) = sup{d(F,9): F c E, F e ®},
where d is any invariant semimetric determining I'(x) (cf. the proof
of 2.3 in [4]). ,
(ii) and (iii) are obvious.
In view of (i), it is important to know when u satisfies condition (ac).

3.2. PROPOSITION 2. A monotone set function u: £ — R satisfies (ac)
in each of the following cases:

(1) u satisfies (usc).

(2) # is a o-ring, E, » E implies u(E,) > u(E), and for every A € #
and ¢ > 0 there is a 6 > 0 such that

u(AUB) < u(A)+¢ whenever u(B)< é.
(3) u has the property

(+) If (C,) is an increasing sequence in &, then for every & > 0 there
exists a 6> 0 such that

#(C,UB) < p(C,) +

Jor all n and all B € Z with u(B) < 8 (see [3], p. 21).

Proof. (1) is easy, and (2) is a consequence of Theorem 3,b in [3].
For (3) suppose that u(4,)+u(B,) >0 but x(4,UB,)+ 0. Then, by
‘passing to subsequences, we may assume that for some ¢ > 0

u(4,VB,)>¢ for all neN
and that for every r e N

ko1
,u(UA,,)<-; for all k> r.
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(Here we use (). for constant sequences (C,).) Choose m € N so that
(1/m) < ¢/2, and set
m+k

D, =14, forall keN.
n=m
Clearly, D, # and pu(D,) < e/2 for all k. By (+) we find 4 > 0 such
that

wB)< 8 = VpDUB) < p(DY)+5 <.
1k

Now let p € N be such that p(B,) < 8 for all n > p. Then
B(ApixYB k) < p(DpUBy k) < &  whenever m+k > p;

a contradiction.
From 3.1 and 3.2 we get immediately

3.3. CorOLLARY 1. The class of uniform D-submeasures on a ring #
(respectively, the class of D-submeasures on a o-ring &) coincides with the
class of monotone set functions u: # — R, for which an order continuous
submeasure n on £ can be found such that u~mn and u 8 uniformly con-
tinuous on (&, n) (respectively, u~n and u < n).

It is therefore evident that results of certain type already known
to hold for submeasures yield immediately the corresponding similar
results for D-submeasures. In particular, most of the results on “abstract”
D-submeasures in Section 1 of [3] can be obtained in this way. Thus,
for instance, Dobrakov’s Theorems 4, 5, 6, 14, 15 follow from [4], 4.8,
6.1, 6.7, 3.1, 7.1, respectively. Actually, only the order continuity of u
and condition (ac) are essential here; (sc) is either superfluous or can
be replaced by the weaker property:

4(B) =0 = u(AUB) = u(4) for all A,Be®.

It is less evident that also one of the main results of [3], the extension
Theorem 18, can be deduced from the extension theorem for submeasures
(see [2], and [4], 7.2). We are going to show this, thus giving a “topo-
logical” proof of Theorem 18 in [3].

.3.4. THEOREM 1 (Dobrakov). Let u,: Z - R, be a D-submeasure
and let & be the o-ring generated by #. Then u, can be extended to a D-sub-
measure u: & — R, iff the following conditions are fulfilled:

’ (i) mo 98 exhaustive.
(ii) u, has property (+) from Proposition 2.

(iii) If (4,) = #, and A\, then for every e > 0 there is a 6 > 0 such
that u* (A,\B) > u*(4,)—e for all n € N and all B € Z with uy(B) < 4.

The extension u, if it exists, is unique.
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Here %, denotes the class of sets which are limits of increasing se-
quences in %, and ut: 2, — R, is defined by

pr(4) = Enm#o(An),
where (4, is any sequence in £ such that 4,7 4. Thus u* is well defined,
finite valued and extends u, (cf. Lemma A on p. 21-22 in [3]).

Proof. Necessity. Suppose that u is a required extemsion of u,
to &. Then, by 3.3, there exists an order continuous submeasure 7 on &
such that y~% and u < . It is obvious that u is exhaustive, and hence
80 18 w,.

Suppose that condition (ii) is not satisfied. Then, as it is easily seen,
there exist an increasing sequence (4,) in %, an ¢ > 0 and a sequence
(B,) in # with po(B,) - 0 such that

po(A,UB,) > py(A,)+¢ for all neN.
Let

4 = U An;
n=1

then
n((4,UB,)AA) < n(ANA,)+7y(B,) > 0.

Since ,u\< 7, wWe get
1o(A,UB,) > u(A) and  po(4,) > p(4),

but this contradicts our assumption.

Similarly, we may verify that u, must satisfy (iii).

Sufficiency. By Proposition 2 (3) and Proposition 1 (i) and (ii),
there exists an order continuous submeasure 7, on £ such that u,~mn,
and ue < 7. Let 5 be the unique ordes continuous extension of 7, to &
(see [2], and [4], 7.2). ’

If there exists a required extension u of u,, and if 4 is an order con-
tinuous submeasure on & equivalent to u, then

NE,) — 0 = u(E,) -0,

whence (A|#) ~po~ny, and so A~z (see [4], 7.3). Thus u, if it exists,
is a continuous (hence unique) extension of u, from (%, n,) to (&, n).
Therefore, as # is dense in (&, 5) ([4], 7.1) and (&, n) is complete ([4],
3.1, 5.2), to prove the existence of such a continuous extension u it is
necessary and sufficient to sliow that

(C) If (4,) = # is such that u,(4, A A,) — 0 (which is equivalent
to 70(4, A A,) - 0), then lim yy(4,) exists in R, .

—>00
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Of course, there is nothing to prove when y, is a uniform D-sub-
Imeasure. .
Suppose that a Sequence (B,) = # _is such that

k-1 1
(1) l‘o( U (Bi+1ABi)) < —
i=n n
holds for all n e N and &k > n.
Take ¢ > 0 and then, for each n € N, choose 8, > 0 so that
VCe®R: po(C) < 8, = po(B,VUC) < po(B,) +¢3
this is possible by (sc). Then, if C e #, and u*(C)< 4,, we also have
u* (B, UC) < pio(B,) +e.
For each n e N and k> n let
k oo
Onk = U B‘i’ arnd 0” = U B‘o
i=n fmn
From the exhaustivity of u, it follows easily that
' ut(C,\Cpx) =0 a8 k — oo.
Hence for each n € N there exists k, > n such that

pt(CN\C,)< 6, forall k>k,.
We have

(2) pt (B V(0 NCpi)) < po(B,)+¢  for all n e N and k> k,.
By condition (iii) there exists 6 > 0 such that
p* (0 \B) > p* (C,)—e
for all n and all B e #Z with u,(B)< 6. Now, since

k-1

Cu B, = U (BenAB)),

we have uy(C,, \B,) < n~ ! for all » and k > n. Choose m € N with m™! < §;
then, if n > m and k > n, we have

‘(3) F+ (Cn\ (Onk\Bn)) = /‘+ (Gn) —é&.

Since
Gn\(onk\Bn) = BnU(Gn\an)’

combining (2) and (3) (for k¥ = £k,) we get

0 < put(Ch)—mo(B,) <2¢ for all n>m.
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Since C,, limu*(C,) exists, and so does limu,(B,).

Now let (4,) be as in (C), and let (4,) and (4,) be two arbitrary
subsequences of (4,). Then a simple argument using o-subadditivity
of 7 (cf. also the proof of Theorem 14 in [3]) shows that we may select
a subsequence (B,) of (4,) which satisfies (1) and contains infinitely
many terms of each of (4,) and (4,). By the preceding part of the proof,
g = limuy(B,) exists, and our argument implies easily that every sub-
sequence of (u, (A,,,)) has a subsequence converging to g. Hence hm wo(4,)
exists and equals g.

*The required extension u of u, is thus defined as follows: Given
A ¥, choose (A,) in #Z such that n(4 A 4,) - 0 and then put

p(4) = limpy(4,).

Since u extends u,, and u is %-continuous, x is evidently order con-
tinuous. So it remains only to verify that ,u is monotone. But this is an
easy consequence of monotonicity of u* and of the fact that for
every A € ¥ there exists (4,) c #, with A < A, for ea.ch n, A, and
n(4,\A4) - 0.

Remark. As the proof shows, condition (ii) can be replaced by (ac).
It is not clear to the author whether conditions (ii) and (iii) are independent
of the other properties of u,.

4. In this section we give an affirmative answer to the problem
posed by Dobrakov on p. 14 in [3], i.e.,, we prove the following

THEOREM 2. Let & be a o-ring of subsets of a set T and let u be a D-
-submeasure on &. Then the range of uy u(¥) = {u(A): A € &} is a compact
subset of R, .

Since u is bounded ([3], Theorem 4), we have only to show that
u(&) is closed.

LEMMA 1. The range of every D-submeasure A-on the a-algjebra 2 (N)
of all subsets of N i8 compact.

Proof. By 3.1 and 3.2, there exists an order continuous submeasure
n on #(N) such that 1 < 5. Now, in turn, » is continuous with respect
to the o-additive measure » defined by

v(4) = Y27,
ned !
and hence 1 is also v-continuous. It is well known that (5’ (N), ») is compact
and, therefore, so is the range of A.

LeMMA 2 (cf. [3], Theorem 10). Let & and u be as in Theorem 2. Sup-
pose that P, Q € &, Q contains no atoms of u and u(P)< u(Pu@). Then
for each a,

p(P)< a< u(PUQ),

there exists B in & such that B = @ and u(PUB) = a.
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Proof. Recall that a set A € ¥ is said to be an atom of u if u(4) > 0
and either u(B) = 0 or u(A\B) = 0 for every Be¥, Bc A. We may
assume that PnQ = @. Let 4 be the class of all families 2 = & which
consist of pairwise disjoint subsets D of @ with u(D)> 0 and are such
that u(PUlJ2) < a. Clearly, each 2 e 4 is at most countable. Let 4,
be a chain in (4, ). Then 2, = (J 4, is at most countable, and hence
there exists an increasing sequence (2,) in 4, such that

oo
U g,n = 90.
n=1

Clearly,
y(PUU@o) =4lim,u(PUU9n) < a,

80 that 9, c 4 and 9 c 9, for all D < 4,.

By the Kuratowski-Zorn Principle there exists a maximal element 2,
in 4. Let B = (J92,; we have u(PUB) < a. Suppose that u(PUB)< a.
Then, since x is atomless on @Q\B and u(@\B)> 0, there exists in &'
a subset C of @\ B such that

4(0)>0 and p(PUBUC)<a.*

(We use the Saks decomposition ([3], Theorem 8) and (sc).) It follows
that 2, is not maximal in 4; a contradiction.

Proof of Theorem 2. By Theorem 4 in [3] we may suppose that
Tes. Let T =T,uT, be a decomposition of T into a purely atomic
part T, and an atomless part T,. Thus T,, if it is non-empty, is the union
of at most countably many pairwise disjoint atoms of u.

Casel. T, = @. Then u(¥) = [0, u(T)] by Lemma 2 (P = 3,Q = T)
or by Theorem 10 in [3].

" Case 2. T, =@ (or u(T,) = 0). Then p(¥) is closed by Lemma 1.

Case 3. T, #0 # T,. Let r, = u(4,9B,) - r, where A, c T, and
B, < T,. We claim that r € u(s). This is non-trivial if » > u(T,) and
7, # r for all n. Assuming this, we shall consider two subcases, each with
two sub-subcases.

(a) A subsequence of (r,), and we may assume that also the sequence
(r,) itself, satisfies r, > r for all n.

(a’) There exists m € N with u(4,,) < r. Then, according to Lemma 2,
we can find B c B,, such that u(4,,UB) =r. Thus r € u(¥).

(a’') u(4,) = r for all n. Then u(4,) > r and r € u(¥) since (TN}
is closed by Lemma 1.

(b) For almost all #, and we may assume that also for all », we have
r,<r.

(b’) There exists m € N with u(4,,UT,)>r. Then Lemma 2 gives
us a subset B of T, with u(4,UB) =r, and thus r € u(¥).
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(b”) u(4,9T,) < r for all n. Then u(4,VT,) —r. Treating T, as
2 “point” (the details are clear), we apply Lemma 1 and see that r € u(<%).

5. Let X = (X, |-|) be a quasi-normed Abelian group. A set function
p: R —> X (with u(0) = 0) is said to be quasi-Lipschitzian with constant
NeR, if

(aL)  |#(AUB)—pu(4)| < Niu(B)| for all disjoint A, B e,
and it is said to be N-triangular with N e R, if '

(Nt)  [u(4)|—N|u(B)| < |p(AUB)| < |u(4)|+ N |u(B)|
for all disjoint 4, B e%.

(Cf. [1], [6] and the references given there.)
- Evidently, (qL) = (Nt). Moreover, if x4 is N-triangular, then the set
function |u(-)|: A — |u(4)| is quasi-Lipschitzian with constant N.

Let u: # — X be quasi-Lipschitzian; then the set function x: # -~ R
defined by

A(E) = sup{ju(F)|: F < B, F e R}
is monotone, x(9) = 0, and satisfies
p(AUB)< y(A)+Nu(B) for all A,BeZ

(hence also (Nt)). It follows from Proposition 1 (i) (which is obviously

valid also if u is _§+-Va.lued) that there exists a submeasure » on % such
that @~. Since (ql) implies that

|u(B) —p(F)| < N (u(E\F)|+ |u(F\E)) for all E,Fe®,
and hence

w(B)—u(F) <2NGEAF) forall E,Fe,

the function u: (£, ) — (X, |-|) is uniformly continuous. If x is ex-
haustive or order continuous, then so is i (cf. [5]), and hence so is 7.

We give, as examples of possible applications, two results on quasi-
-Lipschitzian and N-triangular set functions. The first one improves
a theorem stated in Section 2 of [5]; its proof uses the method of extension
by continuity and is clear enough so that we do not include it here. The
other one is a Nikodym type theorem for N-triangular set functions
(ef. [1], p. 671); we formulate it for R -valued functions only, since this
is essentially the most important case.

THEOREM 3. Every order continuous, exhaustive and quasi-Lipschitzian
set function py: € — X, where X is a complete normed Abelian group, has
a unique order continuous quasi-Lipschitzian (with the same constant N)
extension u to the o-ring & generated by .
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THEOREM 4. Let M be a family of order continuous N-triangular set
functions u: & — R, , where & 18 a ao-ring, such that

sup{u(A): pue M} < oo for every AeS.
Then
sup{u(4): ue M, A €L} < oo.

Proof (sketch). We may easily reduce the proof to the case where M
is countable. Then there exists an order continuous submeasure 5 on &
such that each y € M is »-continuous. Since (&, n) is complete, by a stand-
ard Baire category argument we find that the functions in M are uni-
formly bounded in a I'(n)-neighbourhood of a set A4,e€%. Then, using
(Nt), we see that they are also uniformly bounded in a neighbourhood
of @. Applying the Saks decomposition for % ([3], Theéorem 8) and (Nt),
we quickly arrive at the conclusion of the theorem.

The a.uthor(is indebted to Dr. Z. Lipecki for the suggestion to include
functions of the type considered in Section 5 into the material of this
paper, and also for some interesting comments and pointing out several
inaccuracies in the first draft of the paper.
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