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0. In this paper we formulate several open questions of combinatorial
nature which concern finite abelian groups and which arose with investi-
gations of various factorization properties in algebraic number fields.

Let K be an algebraic number field with the classnumber % and
classgroup H. Denote by R its ring of integers and let, for ¥ =1, 2,...,
F. be the set of all elements of R which have at most & distinet factorizations
into irreducibles. Similarly, let G, be the set of all elements of R which
have at most % such factorizations of distinct length. It is well known
that 7, = R holds only in the case » = 1, and G; = R holds if and only
if A is either 1 or 2. Suitably defined counting functions of the sets F, and
G., as well as of F,nZ and G, N Z, were studied in [1], [3]-[7], [8] (ch. IX),
[9] and [12], and it turned out that asymptotically they behave like

loglog¥x

Ox =
log®xz

’

where C is positive, and « and M are nonnegative constants depending
on K, in most cases having a combinatorial interpretation. It is the aim
of this paper to point out some purely combinatorial problems arising
here.

1. For most arithmetical problems, quoted above, the field K itself
is irrelevant and only the structure of its classgroup is of importance.
We now give a general scheme which permits a translation of those
problems into the language of group theory and thus leads to a study
of factorization properties via abelian groups.

Let @ be an arbitrary abelian group of » elements. We shall consider
finite systems <{g,,...,g,> of nonzero elements of @, i.e. sequences in
which the order is disregarded. Such a system will be called a block if
1+...+9, =0, and n will be called its length. We denote by B(G) the
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set of all blocks. Note that it has a natural semigroup structure with
juxtaposition as multiplication.

A block is called ¢rreducible if it cannot be written as a product of
two blocks. It is clear that many notions connected with factorization
in R, such as unique factorization, the length of a factorization etec.,
have their counterparts in B(H).

For any group G let a(G) be the maximal length of an irreducible
block. It is, clearly, the least integer a with the property that if
g1y 92y --+y 9144 18 an arbitrary sequence of nonzero elements of G with
vanishing sum, then one can select a subsequence of at most a elements
also with vanishing sum. Recall that the constant of Davenport, D(@),
is defined as the least integer b such that from any b elements of @G one
can extract a subsequence with zero sum. Thus, clearly, a(@) < D(@).
However, a8 noted by Davenport, both constants are equal.

PRrOPOSITION 1. For all abelian groups, a(@) = D(@).

Proof. Assume a(@G) < D(G) and let g,,..., 9, (a = a(@)) be ase-
quence without a subsequence with vanishing sum. Let A = —g, —g,—
— ... —g, and consider the sequence g¢,, ..., g, h. By the definition of
a(@), it must have a subsequence of at most a elements whose sum vanishes.
It must be of the form g;,...,9;,h, thus 9y, +.-.+g,+h =0, and

hence
2 g =0,
1

ki, iy

contrary to our assumption.
CoroLLARY (H. Davenport). The maximal number of monprincipal
prime ideal factors of an irreducible element of R equals D(H).

Note (cf. theorem 9.6 of [8]) that this corollary implies that the
number of nonassociated irreducible elements of B with absolute value
of norm bounded by « is asymptotically equal to

(loglogz)PE)-1
logz

C(K)x

with a positive C(K).
ProBLEM I. Evaluate D(G). (P 1141)

This problem was proposed first by Davenport and its solution is
known for all p-groups and groups which are direct sums of at most two
cyclic groups ([10] and [2]). In those cases, if

t
G = @Od,‘. (d,1d,]...|d,),

te=1



then
4
D(@) =1+ D) (d;—1).

{=]
It was conjectured that this equality holds for all groups, but C3@® 0,
can serve as a counterexample (P. 0. Baayen).

We conclude this section with a geometrical interpretation of D(@).
Denote by @, the cube

{Bry ey @ <L, ¢ =1,...,1}

in the real r-space and let @} be its subset consisting of all points with
nonnegative coordinates. Then we have

ProPOSITION 2. For any finite abelian group the constant D(G) is
equal to the minimal integer r with the property that every sublattice A of
Z", which satisfies Z"|A < G, contains at least ome monzero point of Q.

Proof. Let g,,...,9, be a sequence of elements of G and let 4 be
the kernel of f: Z" — @ defined by

r
Ff My eeey M) > Z”igb
i=1
Obviously, there is a common nonzero point of 4 and @; if and only
if there is a subsequence of the g,’s with zero sum and it suffices to note

that this correspondence between sequences of » elements of G and sublat-
tices A of Z" with Z"/A < @G is one-to-one.

2. For an algebraic number field K let 8(K) be the maximal cardi-
nality of a subset A of the classgroup H with the property that for all
integers a of K, whose all prime ideal factors lie in the classes from A4,
the length of any factorization into irreducibles depends only on a and
not on a particular factorization. It was shown by Sliwa [12] that the
number of nonassociated integers ¢ of K with |N(a)| <« and all factori-
zations of the same length behaves asymptotically like

(loglogx)®
log?x

with O positive, ¢ nonnegative and d = 1 —8(K)/h.

Sliwa also considered the following property (C) of subsets of an
wbelian group:

A subset {g,, ..., g,} of @ is said to have the property (C), provided
the following implication is true:

¥ n,9,+...+n,9, = 0 (n; — nonnegative integers) and this equality
is minimal, i.e., if from m,g,+...+m,g;, = 0 with 0 < m; < n;,y m; € Z,

Cx
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it follows that either all m,’s are zero or m; = n, for ¢ =1,...,1, then
t

2 0"(;‘;) =1

(L)

where o(g) denotes the order of g. (Conditions of this type were also con-
sidered in [11] and [14].)

Define §,(G) as the maximal cardinality of a subset of G with the
property (C). The following result lies hidden in the proof of lemma 2 in [12]:

PROPOSITION 3. B(K) = B,(H).

ProBLEM II. Evaluate §,(G). (P 1142)

The solution is known only for cyclic groups of prime-power order,
where

ﬂo(opn) =1+4mn,

as shown by Sliwa ([12], lemma 1, (iii)).

Note that in the case G = CJ (in which case we may treat G as
& linear space over GF(p)), if A < G has the property (C) and u,, ..., %,
is & maximal linearly independent subset of A, then A can contain only
elements of the form

(1) Dp—a)u, (1<a<p)
k=l
with
(2) D a=p-1
ak’:*ﬁ

(cf. [12], lemma 1 (iv)).

This implies immediately the equality B,(CY) = 1+ N, because in
this case the set of nonzero elements of a set with the property (C) must
be linearly independent. The following problem arises:

ProBLEM ITI. Let u,, ..., uy be a basis of O) and let A consist of
all elements of the form (1) satisfying (2) (with r = N). Does A have
the property (O)t (P 1143)

If the answer is affirmative, then

fN+p—2
pied) =1V 12 0%).

Property (O) (and hence problems IT and ITT) admits a geometrical
interpretation. Let B be any subset of Z¥ and let B* denote the subset
of B consisting of all nonzero points with nonnegative coordinates. A point
P ={(w,..., 2y is called minimal if P lies in B* and there is no point
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Y,y -y Yyp in B*, distinct from P, and satisfying ;> y,,4=1,2, ..., N.
For a finite abelian group G and 4 = {g,,..., 9} < G, let 4, denote
the lattice

t
{(nl, ceey M 52‘*2"'«9{ = O}C zZ.

=]
PROPOSITION 4. The set A has the property (C) if and only if all minimal
points of A} lie in a hyperplane.
Proof. If A has the property (C), then all points of 4%, which are
minimal, lie in the hyperplane
4

w, _
®) Z o(g) 1

j=1

The points P; = (0, ...,0,0(g,),0,...,0> (¢ =1, 2,...,t) are clearly
minimal in A} and so if all minimal points of it lie on a hyperplane, this
must be the hyperplane spanned by P,, ..., P,, thus its equation is (3).
Hence A has the property (C).

This proposition leads to the following question:

ProBLEM IV. Describe all lattices in ZV¥ whose all minimal points
lie on a hyperplane. (P 1144)

Now we can give a geometrical definition of £,(@).

PROPOSITION 5. f,(G) 18 the maximal integer t with the property that
there is a lattice A < Z* such that all its minimal points lie on a hyperplane,
2'|A < G and the poinis e, ..., ¢, are distinct mod A. Here e, is the point
whose i-th coordinate i8 1 and the remaining coordinates vanish.

Proof follows directly from the preceding proposition.

3. To deal with questions of unique factorization it is convenient
to reformulate the notion of a factorization in B(@).

Let b = <{gyy...y9,> be a given block in B(@) and let an ordering
of its elements be fixed. By a factorization of b we shall understand, for
& certain positive ¢ = {(P), any surjective map

o: 1,2,...,n}—>{1,2,...,1

such that if 4. = A,(P)[denotes the counterimage ofi for i ='1,2,...,1,
then

Zg’-'_—'o fOl‘ Ti=1’2,.-o’,t’
fedy

f.e. the systems b, formed by the elements g, with j in A, are biocks.
It is obvious that for any such factorization we have b = b,(®)...b,(P).
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If all blocks b;(®P) are irreducible, we call @ an irreducible factoriza-
tion. We say that two factorizations @ and ¥ are equivalent if t(P) = t(¥P)
=1 and for a suitable permutation o of {1, 2,...,¢} the blocks b,(®P)
and b,, (¥) coincide. Two equivalent factorizations are called strongly
equivalent if, moreover, the sets 4,(®P) and A4,, (¥) coincide. A complex
is said to have a unique factorization if all its irreducible factorizations
are equivalent and it is said to have a strongly unique factorization if all
such factorizations are strongly equivalent.

Those properties are independent of the ordering of b.

Let a,(@) be the maximal length of a complex in B(@) with a strongly
unique factorization and, more generally, let a,(G) (k¥ =1, 2, ...) be the
maximal length of a complex in B(@) with at most & strongly inequivalent
irreducible factorizations.

PROPOSITION 6. If H is the classgroup of K, then a,(H) equals the
mavimal number of nonprincipal prime ideals which can divide a square-
free element of R with at most &k distinct factorizations imto trreducible
elemendts.

(An element of R is called squarefree if the principal ideal generated
by it is not divisible by a square of a prime ideal.)

Proof. Lot a be a squarefree element of R and let

aR =p,...p,1I,

where I is an ideal whose all prime ideal factors are principal and p,, ..., p,
are nonprincipal prime ideals. Denote by g, (for ¢ =1, 2, ..., 8) the class
of H which contains p;. Then b = {¢,, ..., g,> i8 a block in B(H). If now

a=“1...“‘

is a factorization of a into irreducibles,

ki
M= n Di g

=1

where %, ..., k, are all distinect and not less than 1,1 <<% (l,j) <s, and
ki+...+k =3, then we can obtain a factorization of b by putting
&(¢) =1 whenever (I, j) = ¢ holds for a certain j. One sees immediately
that distinet factorizations of & correspond in this way to strongly ine-
quivalent irreducible factorizations of b, and conversely. Thus the pro-
position follows. :

The knowledge of a,(@) would give an explicit asymptotical value
for the number of nonassociated integers of K with absolute values of
their norms bounded by 2, which have at most % distinet factorizations
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into irreducibles. In [7] it was shown that this number is asymptotically
equal to
(loglogz)™

log'~*g '’

where C is positive and M = M,(K) equals the maximal number of
nonprincipal prime ideal factors occurring with exponent 1 in the fac-
torization of the ideal generated by a number with at most % distinct
factorizations and we have the following

PrOPORITION 7. For all fields K we have M, (K) = a,(H).

Proof. The preceding proposition implies M, (K) > a,(H). To prove
the converse inequality take any element a with at most & distinct fae-
torizations and write

aR =p,...p,94%' ... g1,

where P,y ...y Dgy ¢1y - -+y ¢; are distinet nonprincipal prime ideals, ¢> 0,
a;>2 for i =1,2,...,t and all prime ideal factors of I are principal.

Let p, be any prime ideal distinct from p,, ..., P,y ¢15 - .-, ¢; and lying
in the class determined by ¢%!... ¢ft. The ideal p,p,...7p, is principal
and squarefree. Take any generator of it, say b, and note that it has at
most k distinct factorizations into irreducibles. Applying proposition 6 we
get 1+8< a,(H) in the case where p, is nonprincipal and 8 < a,(H)
in the case where p, is principal. Thus ¢ < a,(H) holds in all cases and
M, (K) < a,(H) follows.

An upper bound for a,(G) is given by the following result:

PROPOSITION 8. For all abelian groups G ome has a,(G) < |G|. If,
moreover, G 18 cyclic, then a,(G) = |G|.

Proof. For any block <{g,,...,9,> = b denote by S(b) the set of
all nonzero sums of the form

t

Dlegy  (=0,1).

J=1
LEMMA!I. If the block b has a strongly unique irreducidble factorization
(4) b=b»,...b,,
*hen for all disjoint subsets 4, B of {1,2, ..., n} we have

(o) n5([] %) -o.
fed {eB
Proof. Put

X, =Qb,-, X- =Qb,.
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It hyy..., b, are in X, h;,..., h, are in Xz and
hi+...4+h, =h+...4+h, #0,

then exchanging the elements h,,...,h, and Ay, ..., h, in X, and X,
and taking irreducible factorizations of the resulting blocks, we get
a factorization of b which is strongly inequivalent to (4).

LEMMA 2. For any irreducible block b we have |S(b)| = |b|, save b of
the form (g, g, ..., 9> in which case 8(b) has |b] —1 elements and S (b)y {0}
8 the cyclic group gemerated by g.

Proof. Qall a block bad if it has the form (g, g, ..., 9)-

If b is irreducible and not bad, then we can write

b =<g1y92.--» 9> With g; #*g,.

In this case the r elements g,, 8., 9:+92y.--391+92+...+9,_, are
distinet and nonzero and they are all members of S(b). If, however, b is
irreducible and bad, say, b = {g,..., 9> (m times), then m equals the
order of g and 8(b) = {g, 29, ..., (m—1)g}.

CoROLLARY 1. If b =0b,...b, is a strongly unique trreducidble fac-
torization and mone of the blocks b; is bad, then |8(b)| = |b|.

Proof. By lemma 1 the sets S(b,) are pairwise disjoint and as they

all are contained in 8(b), the corollary follows from lemma 2.
COROLLARY 2. If b =b,...b, i3 a strongly unique irreducible fao-
torization and all blocks b; are bad, then

¢
18(0)1 > [ ] 1b —1.
=1
Proof. Lemma 1 implies that if b; = {g;y ..., 9, ¢ =1, ..., then
all elements g,, ..., g, are distinct and lemma 2 shows that all nonzero

elements of the product
t

[] v e}

tm=1
lie in 8(b).
Proof of proposition 8. Let b =b, ... b, be a strongly unique
irreducible factorization and let b,,...,b, be all bad blocks occurring
in it. Let N; = |b;] (¢ =1, 2,...,t). Then by corollaries 1 and 2 we get

(5) S(ﬁbi)>Nl...N,;—1
and =

¢
(6) 8( ] b)=> Frut...+ V..

t=1+k
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If the proposition is false and the block b serves as a counterexample
to it, then we must have N,+...+ N, > 1+, but (5), (6) and lemma 1
imply
'Nl+k+“’+'N‘+'Nl‘Na cece Nk—‘l < h
and so for ¥ = 0 we have already a contradiction and for ¥ 7# 0 we obtain
N,N,...N, <N,+...+N,

which never happens to be true. The obtained contradiction establishes
our proposition, the cyclic case being trivial.
An evident lower bound for a,(@) is contained in the following
ProrosITION 9. If

then
a, (@) > Z n,;.

{=1
Proof. It suffices to observe that if ¢,, ..., g, are generators of the
cyclic summands of @, then the product of bad blocks containing g,, ..., g,
has a strongly unique irreducible factorization.
The exact value of a,(@) is still unknown, so we have
ProBLEM V. Determine a, (@) and, more generally, a,(@)fork =1, 2,...
(P 1145)

4. Another combinatorial constant which is, as we shall see, very
similar to the constant of Davenport, arises when we consider factori-
zations of rational positive integers in quadratic fields. It was shown in
[6] that the number of positive rational integers less than x, which in
a given quadratic number field K have a unique factorization into irre-
ducibles, is asymptotically equal to

! loglog¥z

where C i8 positive and depends on K, M is also positive, depends only
on the classgroup H of K and was defined in [5] in a rather complicated
way. We shall now show that this constant can be defined in a very simple
way and give a geometrical interpretation of it similar to the interpre-
tation of D(@) given in proposition 2.

We start with recalling the definition of M = M (H). Write

t
(7 H=©0,,
i=1
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where all summands are cyclic of %,, ..., k, elements. For a given integer
a and ¢t =1,2,...,¢t put [a];, =h,—a if a #0 and [a}; =0 if a = 0.
Consider now sequences {a,, ..., a,} of rational integers satisfying

(i)o0<a,<h—1lfori=1,2,..,1

(ii) a, < [a,], and if for a certain ¥ we have a; = [a,];for: =1, 2,...
...y k—1, then a, < [a,];.

A set of sequences

{@ ..,y (j=1,2,..,7),

satisfying (i) and (ii), is called admissible provided for any two distinct
0-1 sequences {eyy ..., &p}y {91, ..., 7p} there is an index ¢, 1 <4 < ¢, such
that

T T
(8) D ea® = D naf) (mod hy).
k=1 k=1

The constant M equals the maximal cardinality of an admissible set.
The next proposition shows that this definition can be simplified:

PROPOSITION 10. The constant M equals the maximal cardinality of
a subset {g,y...y9,} of H with the property that all sums

n

9) Dagd (G =0,1;k=1,...,n)

k=1
are distinct.

Proof. Let 4,,..., 4, be fixed generators of the cyclic summands
of @. It was noted already in [5] that the orbits of G under g —> —g are
in a one-to-one correspondence with sequences {n,,...,n,} satisfying (i)
and (ii) given by

t ¢
{14y i} <2 m Ay — 2 ’”'iAs>-
tm] fom]

Now let g,, ..., g, be such that all sums (9) are distinct. Write each
g; in the form

‘ .
b= Sma, =1,
Jm=1

and let the sequences m{’, ..., m{? satisfy (i) and (ii) fori =1,2,..., R
but not for ¢ = R+1, ..., n.

Consider the sequence ¢, ..., ggy —9gr+1s -+-y —9n and let us prove
that all sums formed by subsequences of it are distinct. Indeed, let

9ot tg, (=g )+ +(—95) =g, +- g, F(—g)+... +(—g,)
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be a nontrivial equality. We may assume that no cancellation is possible
here, thus

{iry ey} {kyy ooy B} = {1y ooy Jo} N {liy .oy la} = 9.

As for a<a, f<)b, y<e¢ 8<dwe have i, k, < R < jg, I, all four
sets of indices are disjoint and we arrive at a nontrivial identity

a d b c

Zgia"‘ 291,, = Zgj,,'l' Z‘gk,,,
a=1 a=1 A=1 y=1

contrary to our assumption.

The sequences of integers subject to (i) and (ii), associated with
orbits of ¢,,..., 9ry —9r41y .-y —9gn, €vidently satisfy (8) and so the
inequality » < M follows. The converse inequality is immediate: if the
orbits (g1, —91)y -++y (9., —9,) are such that the corresponding sequences
realize (8), then all sums (9) are distinct.

Now define M (@) for an arbitrary finite abelian group G as the
maximal cardinality of a subset {g,,...,9,} of @ for which all sums (9)
are distinct.

One sees immediately that M (@) is equal to the maximal cardinality
of a subset {g,,...,9,} of @ with the property that the sum

Dleg,  with g =0,1, —1
i=1
can vanish only if &, =0 for¢ =1,...,n.

If @ = Ok, this constant was considered recently by Stein [13] in
connection with the graph theory. He showed that for odd m the following
inequality holds:

. log (m*=*(m —1))
M(Cn) < Tog2 .

The following proposition gives the trivial bounds for M (G):
ProrosITION 11 (lemma 14 of [5]). If

t
G = @ CN"
i=1

t
[ logN; log |G|
<SM(@)< .
% [ log2 ] @ [ log2 ]
It results that if @ is a 2-group, then M(G) = log|@|/log2 and it

is clear that M(0)) = N, as @ is in this case a linear space over GF(3)
and M (@) is the maximal cardinality of a linearly independent subset of G.

then
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ProOBLEM VI. Determine M (G). (P 1146)
We conclude with a geometrical interpretation for M (G):

PROPOSITION 12. The constant M (G) equals the minimal integer r with

the property that there exists a sublattice A of Z™ not containing any nonzero
point of @, and for which Z"|A < G.

1]
(2]
(3]
(4]
[5]

(6]
(71

(8]
(91

{10]

(11]
[12]

{13]

(14]

Proof. Copy the proof of proposition 2, replacing @;} by Q,.
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