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1. Introduction. The purpose of this paper is to prove some results
concerning almost everywhere convergence for Hermite and Laguerre expan-
sions. We prove certain maximal inequalities associated with the respective
Riesz means, which imply the almost everywhere convergence in a routine
way. The maximal inequalities are based on certain L? estimates for the
kernel of the Riesz means obtained by adapting a technique used by J. Pee-
tre [4] to deal with constant coefficient elliptic differential operators on R™.
The same technique was used by G. Mauceri in [3] to study the Riesz means
for the sublaplacian on the Heisenberg group.

Let &,(z) stand for the normalized n-dimensional Hermite functions
and let Py be the projection of L?(R™) onto the eigenspace spanned by
{®,: |u| = N}. The one-dimensional Hermite functions will be denoted by
@;(t). The Riesz means of order a of a function f is defined by

(L1) sa) = 3 (1- 2 ")+ Py f(z).

In [7] we studied the L? norm and almost everywhere convergence of S&f
to f. There we proved that when a > (n —1)/2, n > 2, S§f converges to
f in norm for all f in LP(R™), 1 < p < oo. In this paper we give a different
proof of this result. We prove

THEOREM 1. Letl < p< oo, f€ LP(R") and a > (n — 1)/2. Then we
have the uniform estimates

IS&Sll> < ClIfl,-

Moreover, Sgf converges to f in norm as R — oo for f in LP(R"), 1 <
p < 00.

In [7] we also proved the almost everywhere convergence of S&f to f
when @ > n/2 — 1/3. In this paper we will improve this result by proving
the following.
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THEOREM 2. Assume that f € LP(R™"), p > 2 and n > 2. Then we have
(i) im, . S f(z) = f(z) for a.e. z ifa > (n—-1)(1/2-1/p).
(ii) limp—oo SRf(z) = f(z) at every Lebesgque point z of f if a >
(n-1)/2.
We can also prove a.e. convergence results for 1 < p < 2 but we do not

state them here as they are weaker than the results already proved in [7].
The above theorem will be a consequence of the maximal inequality

(1.2) sup |SRf(z)| < CM,f(z),
R>0

which holds for a > (n — 1)/2 and will be proved in Section 4.

Next we consider the Laguerre expansions of the following type. Let
L:‘l be the Laguerre polynomials of type n — 1. Then the functions
cn{k!/(k+n— 1)}V/2L21(+2/2)e~"*/4 form an orthonormal family in
L*(R,, 7?1 dr) for a suitable ¢,,. Given a function f on R, we consider
the series

(1.3) f(r) =Y Ru(f)LE(r2[2)e™ /4
k=0
where Ri(f) is defined by

(14)  Ru(f) = enr—r

p—— | f(r)L?~}(r?/2 e~ /Apin=1gy

We studied this series in [6], where we proved the norm convergence of the
Riesz means o f(r) defined by

(18)  oRf()=2 (1 - 2’“;; ")+ Ri(f)Ly (r?/2)e " /4

k=0
Here we will prove the following.

THEOREM 3. Assume that f € LP(Ry,r**"1dr), 2 < p < 0o. Then
o f(r) — f(r) a.e. provided a > (2n —1)(1/2 - 1/p).

Again it is possible to prove a.e. convergence results for 1 < p < 2.

The plan of the paper is as follows. In the next section we prove some
basic lemmas for Hermite expansions which will then be used in Section 3
to prove the norm estimates for the Riesz kernel. In Section 4 we prove the
maximal inequality. For the proof of the almost everywhere convergence
results we refer to [2]. In the last section we take up the case of Laguerre
expansions.

The author wishes to thank the referee for pointing out an error in the
previous version and also for his suggestions which were used in the proof
of Theorem 4.1.
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2. Some basic lemmas for kernels defined by Hermite func-
tions. We begin with a very simple estimate for the kernel of the partial
sum operator Sy. Let ®x(z,y) = 30|,z Pu(2)®u(y) be the kernel of the
projection operator Pi so that the kernel Sy(z,y) of Sy is given by

N
(2.1) Sn(z,9) =) Bi(s,y).
k=0

LEMMA 2.1. There is a constant C independent of N, z and y such that
for all z,y € R™®

(2.2) |Sn(z,y)| < CN™2,

Proof. This lemma has been proved in [7] using pointwise estimates
for the one-dimensional Hermite functions. Here we propose a very simple
proof based on Mehler’s formula.

In view of the Cauchy-Schwarz inequality it is enough to prove the lemma
when z = y. Recall that Mehler’s formula states that when |r| < 1

> @ua,p)rt = 721 exp (~F1ET ol 4 ) + TEEY
k=0

so that when z = y

o0
1-r
k— z—n/2(1 _ p2)—n/2 -
(2.3) kz=od5k(a:,z)r =741 -7r%) /exp( T 7% )

Therefore, for 0 < r < 1,

rN ZQk(z z) < Z erk(z ) <C(1-r)" ~-n/2

k=0
where C is independent of N and z. Taking r = e~'/N we obtain
e 1Sn(z,z) < C(1 - e V/N)=n/2 < CN™/2,
This proves Lemma 2.1.

The next lemma is about the kernel &, (z, y) itself. In view of Lemma 2.1
it is reasonable to conjecture that |#x(z,z)] < CN™/2-1; the next lemma
shows that this is indeed true.

LEMMA 2.2. Assume thatn > 2. Then there is a constant C independent
of N and z such that

(2.4) |®n(z,2)| < CN™/2-1,
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We remark in passing that this lemma is not true when n = 1. In fact,

in that case #x(z,z) = (¢n(z))? and the L™ norm of ¢pn(z) behaves like
N-1/12

Proof. We prove the lemma by induction. Assume that it is true when
n = m, m > 2, and consider the case n = m+1. Writing z = (y,t), y € R™,
t € R, we have

N
en(z,2)= Y (Bu(¥) (i) = D (i) *EN-;(3,9)
lul+i=N j=0
N
< CY (N =)™ (p5(2))?
j=0

by the induction hypothesis. By applying Lemma 2.1 with n = 1 the above
gives the estimate

N
Sn(z,z) < CN™/2-1 z(%(t))z < CN(m+D/2-1
j=0

So, it suffices to prove the lemma when n = 2. Writing z = (¢, 3) we have

N
On(z,2) = Z(‘Pj(t))z(SON-j(S))” :

In view of (2.3) it is clear that &x(z,z) is a radial function. Therefore, if
r = |z| then we have

N
Bn(z,2) = Y _(2i(r))(on-i(0))%.

i=0

Now assume that N = 2m. Then ¢;(0) = 0 if j is odd and (y2;(0))? is
explicitly given by (see Szegé [5])

Ir2j+1)
. 2 =
(24(0)) x1/222(P(5 4+ 1))2
Therefore,
m Ir2m-25+1)
— . 2
dn(z,z) = j§=o:(<PzJ(")) x1/22N-25(F(m - j + 1)) °

Using Stirling’s formula for the gamma function we have

(2.5) &N (z,2) S C Y (¢a;(r)(N - 25 +1)71/2.

§=0
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Next we need the following estimates for the Hermite functions, which follow
from the table on p. 700 of Askey—Wainger [1]:

lpi(2)| < Ce=9’ if 2 > (25 +1),

2.6 :
(25) SC(A+2j+1-22)714 ift? <(25+1).

We split the sum in (2.5) into two parts. Let jo be the smallest integer
such that r? < 2jo + 1. The sum

Jo—1
Y (p23(r))*(N - 25+ 1)71/?
i=0

-2dr? The other sum

is clearly bounded since (¢2;(r))? < Ce
m m
Y (eai(r) (N -2+ 1) <CY (14T - ) VAN +2-J) 12
j=Jo J=jo
where J = 25 + 1. Since 72 < 255 + 1 = Jy, the above sum is bounded by
m
Y A+J=Jo)y VAN +2-J)
Jj=Jo
2m+1
< Y (45— Jo) AN +2-4)7/
i=Jo
2m41-Jo
< ) (4N +2-TJ-5)
j=0

a
=) (145 (a+1-5)712.
j=0
Clearly, the last sum is bounded. Similarly for N = 2m + 1. This proves
the lemma.

In the next section, where we are going to estimate the L? norm of
the kernel S§(z,y), we need to know how the kernel changes when it is
multiplied by (z — y)?. The following lemma gives a precise expression
for (z — y)?S&(z,y). More generally, given a function 9 defined on the
nonnegative integers we consider the kernel

(2.7) My(z,y) = ) $(2N + n)én(z,9)
N=0

and see what happens when My(z,y) is multiplied by (z — y)®.
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To state the next lemma we need to introduce some notation. Let A be
the finite difference operator defined by

(2.8) AP(N)=¢(N +1) - p(N)
and let A* be defined inductively. Weset A; = —d/dz;+z;, B; = —d/dy;+

yj and (B — A)" = [[;_,(B; — A;)" for any multiindex y. By A*My(z,y)
we denote the kernel M x y(z,y). With this notation we have the following.

LEMMA 2.3. For every multiindez 3 we can write

(z - 9)°My(z,y) = )_ Crs(B — A)'AFIMy(2,y),
where the sum is eztended over all multiindices v and § satisfying 26; —v; =
Bi» 65 < B;.
We proved this lemma in [6]. The proof uses the recursion formula for
one-dimensional Hermite functions and the fact that

(29) (-5 +1) #50 = @G + ) i),

3. An L? estimate for the Riesz kernel. To prove the maximal
inequality which we need to establish almost everywhere convergence we
require the following estimate for the kernel S§(z,y) of the Riesz means
S&.

THEOREM 3.1. Assume that n > 2. Then there is a constant C such that

1/2
f |S&(=, y)|2 dy) < C'R"/“(l + RI/ZT)-a-l/z .

Jz—y|2r

Proof. In view of the orthonormality of the Hermite functions &,(z)
the square of the L? norm of the kernel S&(z, y) equals

(3.1) ) _(1-v/R)¥N(z,z)

where we have set v = 2N + n. In view of Lemma 2.1 the above is bounded
by CR™?, and so the estimate of the theorem is valid when R/2r < 1. It
is therefore enough to prove the theorem when R/2r > 1.

The proof is based on an old idea of Peetre [4]. We split the kernel into
two parts and estimate each part separately. For that purpose we take a
C function W; such that Wy(s) = 1ifs<1—-t, Wy(s)=0ifs>1-1¢/2
and |W,(k)(.s)| < Cit % onl-t<s<tf2 Heretis a fixed real number,
0 <t < 1. With this choice of W; we define

(3.2) S%2(z,9) = Y _(1 - v/R)IWy(v/R)BN(z,Y),
(3.3) S&1(z,y) = Si(z,y) — S& (2, ).
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LEMMA 3.1. There is a constant C such that
[158.(z, y)dy < CL2+1RA12.

Proof. The square of the L? norm of S ,(z,-) is given by

(3.4) > (1 - v/R)}*(1 - Wi(v/R))*®n(3,2).

Since 1 —t < v/R on the support of 1 — W;(v/R), we have

(3.5) 185 (s, p)Pdy<cir* Y on(s,3).
1-t<v/R<1

Using the estimate &x(z,y) < CN™/2-1 we obtain
(3.6) [ 158 1(z,y)I* dy < C£2*R"/2-1(Ry).
This proves the lemma.

LEMMA 3.2. Assume that m is an integer greater than 2a + 1. Then
there is a constant C such that

[ 1a - yI™™|S5 2(2, )| dy < CLro+1-2m p=mnf2,
Proof. It is enough to prove the estimate
(3.7 [ (z - y)°S35(z,y)| dy < Ct2e+1-2m g=mtn/?

for every 8 with || = m. If we set (N) = (1 - N/R)§W(N/R) so that
Sf2(z,y) = My(z,y) then in view of Lemma 2.3 we have

(3.8) (z — 9)PSRa(z,9) = ) Cqys(B — A)ALISE 5(2,9)

where 2|6| - |y| = m, |6] < m. On expanding (B — A)” a typical term of
the above sum is

(3.9) S ABly(2]4] + n) B8, (y)A"8, (z)

where 2|6| — |o| — || = m, |6] < m. Using the properties of A and B we see
that the square of the L2 norm of the above sum is bounded by

(3.10) > |AVIp(2N + n)2(2N + n)loHTldp (2, 2) .

Now recall that ¢(N) = (1 — N/R);Wy(N/R). The effect of A acting on
¥(N) is to bring out the factor R~1¢t~1. This is clear when A falls on
Wi(N/R) as [W/(s)| < Ct~!, and when A falls on (1— N/R)$ it brings out
R~1(1 - N/R)™!, which is bounded by R~'t~! since on the support of W;,
1-N/R>t/2.

In estimating the above sum we have to treat two cases separately. When
at least one A falls on W, the sum is extended over 1 -t < v/R<1-1/2
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and it is bounded by
(3.11) R™2813=2I5 142 Y. (2N +n)ltlley(s,3).
1-t<v/R<1-t/2

Using the estimate for #n(z,z) we immediately see that the above is
bounded by
R-2|6|+|¢r|+|‘r|+n/2—1t—2|6|+2a(Rt) )

Since 2|6| — |o] — || = m and 2a + 1 — 2|6| > 2a+ 1 — 2m we get the bound
Ct2a+l—2mR-m+n/2.

When all the finite differences fall on (1 — v/R) the above sum is
bounded by

(3.12) RN (1-y/R)F 2N 4 n)e gy (2, 2)
v/RL1-/2

The sum taken over 1 -t < v/R < 1-1/2 gives the same estimate as before.
The remaining part is bounded by the integral

1-t 1
R-261+lol+Ir+n/2 f (1- 8)2a-2|6| ds = R—™tn/2 f s2a=218l gg
0 t

Since 2|6] — |v| = m, 2|6] > m or 2a — 2|6|] < 2a — m so that 2a —2|6| +1 <
2a+1—-m < 0 by the choice of m. Therefore, the above integral is bounded
by Ct2a-2l8I+1 < C2e+1-2m  This completes the proof of Lemma 3.2.

Now we prove Theorem 3.1. When |z — y| > r, writing

1 _
§|5i'z(-’0a3/)|2 < |SR1(2z, 9P+ r72" |z — y>™|S 2 (2, ¥)?
we have
f Isﬁ(a’, y)|2 dy < C{t2a+1Rn/2 + r-ZmR-m+n/2t2a+l-2m} )
z—y|2>r

The choice t = (R'/2r)~! proves the theorem.

4. The maximal inequality and almost everywhere convergence.
As a corollary to Theorem 3.1 we first obtain the following theorem con-
cerning the LP norm of S§(z,y) when 1 <p< 2.

THEOREM 4.1. If1<p<2anda>(n-1)/2 then
([ 1SaeuPdy) " < CRMON 4 pEr)em R0l
le—yl2r
where 1/p+1/q =1 and C is independent of R, r and .
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Proof. Consider a partition of R" into the dyadic annuli A; = {y :
2ir < |z — y| < 2+1r}. Applying Holder’s inequality we obtain

@y ([ ISEEurd)

lz—yl2r
had 1/2
<Y lae-nen ([ isaz,y)r) .
i=0 A
Since |A;| < C(2'r)", using the estimate of Theorem 3.1 we get

1/p i Rn/4(2i,-)n(1/p—1/2)
«2) ([ 15%ev)rd) 30_2;(1 TR

le—y|2r

The sum on the right-hand side of (4.2) is equal to

R0 "(2it)B(1 4 2t)=4 = RMCIF(1)

=0

where t = R'/?r, A = a +1/2 and B = n(1/p — 1/2). Once we know that
F(t) < C(1+t)B~4 we are done. The estimate for F(t) is clearly valid for
t>1as0< B< A,and for 0 <t <1, F(t) is bounded by

oo
)= Y (F)P(+20A,
t=-—00
which in turn, being bounded on [1, 2] and satisfying G(2't) = G(t), is also
bounded on (0, ).

At this point we are in a position to complete the proof of Theorem 1.
Taking p = 1 and r = R~'/? in Theorem 4.1 we obtain

J ISk wldy<c.
lz-y|2R™/?
Combining this with the estimate |S§(z,y)] < CR™/? gives
(4.3) [ 183z, v)ldy< C
nl

when a > (n — 1)/2. Similarly we have [g.|S&(z,y)dz < C. Hence it
follows immediately that

IS&flle < Cllflle, 1<p< 0.

For f € Cg°(R™), Sgf — f in norm, and hence a density argument shows
that S§f — fin LP(R*), 1 < p < oo.
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Now we can state and prove the main maximal inequality for the Riesz
means. Before that let us recall the definition of M, f(z):

1/p
(4.5) Myf(z) = (sup B [ If(w)lPay) .
r>0
B,(z)
The proof of the next theorem as well as that of the previous one are taken
from [3).
THEOREM 4.2. Assume that f € LP(R"), p > 2 and a > (n — 1)/2.

Then

sup [S5£(2)] < CM,f(=).

R>0

Proof. The proof is based on the estimate of the previous theorem. Let
f be a function vanishing in |z — y| < r. Then

(46) safel<( f Isa@wIedg) Il
lz—yl2r

where 1/p+ 1/q = 1. Since ¢ < 2 we have

( f IS}";(z,y)I"dy)l/q < CRn/(2p)(1+R1/2,’.)-a—1/2+n(1/q-1/2) )
lz=yl2r

Given f we set fi(y) = f(y) if 2% < |z —y| < 2¥*! and fi(y) = 0 otherwise.
Then

1SS < Y ISRfu(2)]

k=-o00
oo
< CRn/(2p) Z (1 +Rl/22k)—a-1/2+n(1/q—1/2)”fk"p.
k=-o00

Since || fi]l, < C(2")"/”Mpf(a:) the above sum is dominated by

(o o]
CM,f(x) Z Rr/(2P)gkn/p(1 4 R1/29k)-a=1/24n(1/9-1/2)

k=-o00

< CMpf(z) Z (Rl/22k)n/;5(1 + R1/22k)-a—1/2+n(1/q—1/2)
. k=-o00
. = CM,f(z)G(R'?).
The function G(t) = 52 _ . (2¥)"/P(1 + 2kt)—o-1/24n(1/9-1/2) i5 clearly
locally bounded and since G(2't) = G(t) it is bounded on (0,00). Hence we
have |S&f(z)] £ CM,f(z) and this proves the theorem.
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The deduction of the almost everywhere convergence and convergence at
the Lebesgue points are rather routine; we refer to [3) and [4].

Finally, we remark that it is possible to get an L* estimate for S§(z,y)
when |z — y| > 7, and hence an estimate for flr-ul?_f |S&(z,y)|P dy when
p > 2. This leads to a.e. convergence for 1 < p < 2 as in [3]; we will not
pursue this either.

5. Almost everywhere convergence of Laguerre expansions. As
we have already observed in [8], there is a close connection between the
Laguerre expansions which we want to study and the Weyl multipliers. So
we will first study certain maximal operators defined by Weyl multipliers
and then deduce results about Laguerre expansions.

Let 7 1(2) = L% 1(|2|2/2)e~1#*/4 and let Qn be the projection defined

by @nf = cp"N"l X f. Here the twisted convolution of two functions is defined
by '
(5.1) fxg@)= [ f(z-w)g(w)e™ =0/ du.

cl

Consider the following Riesz means o§; f for functions defined on C™:

(52 %8 =3 (1- ZE) Qurca
* N - N + k ,
which is given by twisted convolution with the kernel
2k +n\* ,_
(53) o)=Y (1-2) i)
+

The basic maximal inequality we are going to prove is the following.

THEOREM 5.1. Assume that p > 2. Then fora > n—1/2
(5.4) sup lof f(2)| < CM,f(2)
N>0

for all functions f in LP(C").

As in the case of Hermite expansions this theorem will be proved using
the following estimate.

THEOREM 5.2. Assume 1 < p<2. Then fora >n—1/2
( f IGR',(Z)l"dZ) 1/p < CNn/q(l + Nl/2,r)—a—l/2+2n(l/p—-1/2)
lzl2r
where 1/p+1/qg=1.

To prove this theorem it is enough to prove the following.
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LEMMA 5.1.
1/2
([ lof(2)Pdzs) " < CNPA(1L4 NYr)mami,
|z|2r
To prove this lemma we need the following estimates.

LEMMA 5.2.

1/2
(i) ([ lex'@Pdz) " < one-,
c'l

(i) ( J teriaraz)” <onmr,
J

Proof. In view of the formula 2{2’:0 Lg(r) = L%t (r) we can write
er(2) = Zf:;o ¢r~1(z) and since p7%"! are orthogonal functions on C™ we
get

N
[ lod(2)Pdz=3" [lep~(2)] de.
c" k=0

Therefore, it is enough to prove (i). But (i) is one of the basic properties of
Laguerre polynomials.

As before, choosing W; we split the kernel o§;(2) into two parts. For the
first part, using Lemma 5.2 we can prove the estimate

1/2
(5.5) ( f lof 1(2)I dz) < Ctot1/ZNn/2
cﬂ
For the remaining part o} ,(z) we need to prove the following estimate.
LEMMA 5.3. Assume that m is an integer greater than a + 1/2. Then

f |z|4m|aj‘{,'2(z)|2dz < CN—2m+nt2a+l-4m .
cn

The proof of this lemma requires the following result. Consider a function
M (z) of the form

M(z) =) d(k)pp'(2).
. k=0
I?eﬁne the operators A, and A_ by

Ay (P(k)) = (kb +1) — p(k),
A_(¥(k)) = $(k) - $(k-1).
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LEMMA 5.4.
%M2 M(z) = - Z%(M-Aw(k) +nA_p(k))pr ().

Proof. The proof is elementary. We just use the recursion formula for
Laguerre polynomials:
(5.6) rL(r)
= (2N +n)L371(r) = (N + 1)L (r) = (N + n = 1)L (r).
Using this and rearranging we get the lemma.

We make the following observation. The effect of multiplying Y7o o ¥(k)
X ¢p~1(2) by |z|? is to change 9 into ¥ where 9;(k) behaves like k~19(k).
Repeated application of this lemma shows that |z|>™ Y32, ¥(k)pr~1(2) is
of the form Y32, ¥m(k)pr~"(2) where 9, (k) behaves like k~™4(k). This
observation can be used as in the Hermite case to prove Lemma 5.3.

The proof of the maximal inequality (5.4) and the deduction of the fol-
lowing theorem are routine.

THEOREM 5.3. Suppose that f € LP(C"), p > 2. Then

(i) o f(2) — f(2) a.e. provided o > (2n —1)(1/2 - 1/p).
(ii) o f(2) — f(2) whenever z is a Lebesgue point provided a >
(2n - 1)/2.

Now to derive the almost everywhere convergence results for Laguerre
expansions we proceed as follows. Let f be a radial function. Then we claim
that

(5.7) Qrf = Re(f)ep ™!

To see this we use the fact that the Weyl transform of a radial function f
reduces to the Laguerre transform (see [2]):

W)=Y Rl f)Pe

k=0

where Pj are the projections associated with the Hermite expansions on R™.
We also know that W(pp~!) = P; and W(f X g) = W(f)W(g). Hence the
claim. Thus if f is radial we have

69 owfn=3 (1-EE) RN,

k=0 +

and from Theorem 5.3 we get the almost everywhere convergence result for
Laguerre expansions.
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