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1. Introduction.

1.1. Rademacher proved his well-known theorem on total differen-
tiability for the case of a function of two real variables. In his paper he
asserts (cf. [3], p. 341) that the theorem carries over at once to functions
of several real variables. Inspection of his proof reveals that this is not
quite the case. Indeed, for the case of three variables, his proof requires
the unlikely condition that if p = (x,, ¥, 2,) and q = (z,, ¥, 2,) are
in an arbitrary measurable set S, at least one vertex of a box with edges
parallel to the coordinate axes and with p and ¢ as vertices of the diagonal
(e. g.y (g9 Y1y ?1) OT (24, Y1, 2,)) must be in Stepanoff’s proof [5] of an
extension of Rademacher’s result also fails to take account of this crucial
step. In order to rectify this oversight, we introduce below (see 2.1) the
concept of the accessible set and, by Accessibility Theorem (see 2.8),
we are able to prove the Rademacher theorem for functions of several
variables by modifying Rademacher’s proof.

1.2. Notation. Let p = (p',..., p") denote a point of Euclidean
n-space R". Then, for n> 2, n,p denotes the projection (p!,...,p" ).
If § is a subset of R", we denote by S(p%, ..., p"), 2 <k < n, the (k—1)-
-dimensional section of 8 consisting of all points («,...,2*"!) in R*!
guch that (2%, ...,2%, p¥, ..., p") is in 8. We set

p—ql = (f(p’—q’)’)m,
i=1

and let 8 xT denote the usual Cartesian product. Let L,S denote n-
-dimensional Lebesgue measure of 8. The term measurable is brief for
L,-measurable. The symbol A[p, S] is defined in 2.1. We use Vf(p) for
the n-tuple of partial derivatives (f;(p),...,f.(p)) so that in the inner
product notation

Vip)-(0—q) = D fi(p)(®'—¢).

i=1
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2. The accessible set.

2.1. Definition. Let 8 be any subset of R* and let p = (p, ..., p")
be any point of S. The accessible set of p, denoted by A[p, 8], is S itself
if n =1, but for » > 2 consists of all points z = (2%, ..., 2") of § which
satisfy the condition that the points (z,..., a7 pi*%, ..., p") be in &,
j=1...,n—1.

The following lemma follows easily from the definition by induction:

2.2. LEMMA. If 8 is any subset of R" and p a point in 8, the following
tnductive formula holds (see 1.2 for motation):

if n=1,

Alp, 8] = n .
(A [7,p, S(PYIXRBY)NS if n>2.

2.3. THEOREM. Let S be an L,-measurable (Borel) (closed) (open)
subset of R™, and let p = (p', ..., p") be a point of 8 satisfying the condition
that, if n > 2, the sections S(p*, ..., p") are L,_,-measurable (Borel) (closed)
(open) for k = 2,...,n. Then the accessible set A[p, S] is L,-measurable
(Borel) (closed) (open).

Proof. We prove the theorem for the L,-measurable case; the other
three cases follow by replacing the epithet “L,-measurable” by “Borel”,
“closed”, and “open”.

The theorem is a consequence of 2.2. It is immediate for n = 1.
We proceed by induction. Let n > 2 be any assigned positive integer,
and assume the validity of the theorem when n —1 replaces n. Let 8 be
any L,-measurable subset of R", and let p = (p, ..., p") be a point of
8 such that 8(p*, ..., p") are L,_,-measurable for £k = 2, ..., n. Then S(p")
is L,_,-measurable and, if »—1>2, its sections S(p™(p% ..., p" )
= S(p%, ..., p") are IL,_,-measurable for k = 2,...,n—1. Accordingly,
by the inductive hypothesis, the accessible set A4 [=,p, S(p")]is L,_,-
-measurable. Now, in view of closure under finite intersections and
Cartesian products, the application of 2.2 completes the proof.

2.4. CorROLLARY. If 8 is a Borel (closed) (open) subset of R", then for
every point p in S the accessible set A[p, 8] is Borel (closed) (open).

Proof. This follows from Theorem 2.3, since sections of Borel (closed)
(open) sets are always Borel (closed) (open).

2.5. COROLLARY. If 8 is an L,-measurable subset of R", then for almost
every point p in S the accessible set A [p, S] is L,-measurable.

Proof. This follows from Theorem 2.3, since the Fubini Theorem
asserts that for almost every point p in 8 the sections S(p*, ..., p") are
L;_,-measurable, &k = 2, ..., n.
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The following two lemmas are well known and are easily proved:

2.6. LEMMA. Let S,, 8, be L,-measurable subsets of R". Then a point
p of R™ t8 a point of density of 8; N 8, if and only if p is a point of density
of 8; and 8,.

2.7. LEMMA. Let p = (p%, ..., p") be a point of a cylindrical subset
8 X R of R*, n > 2, where S is an L,_,-measurable subset of R"~'. Then
P 18 a point of density of 8 X R* if and only if n,p is a point of density
of 8.
~ 2.8. AccessiBiLiTY THEOREM. Let S be an L,-measurable subset of
R, and let p = (pY, ..., p") be a point of S such that, if n > 2, the sections
S5 ...,»", k=2,...,m, are L, _,-measurable. Then p i3 a point of
density of the accessible set A[p, S] if and only if (1) p is a point of density
of 8 and (2), if n > 2, the projections (p, ..., p*~') are points of density of
the corresponding sections S(p%,...,p™), k =2, ..., n.

Proof. The theorem is a consequence of Lemma 2.2 and the well-
-known Lebesgue Density Theorem. It is obvious for n = 1. We proceed
by induction.

Let n > 2 be assigned, and assume the validity of the theorem when
n —1 replaces n. Assume that n > 3, since the case » = 2 is a consequence
of 2.6 and 2.7, in view of the formula A[p, 8] = (S(p?) X R) N 8. Let 8
be an L,-measurable subset of R", and let p = (p%, ..., p") be a point
8 for which each section S(p*, ..., p") is L,_,-measurable, k = 2, ..., n.
Then it follows at once that the section S(p") is L,_,-measurable and
its sections S(p™)(p%,...,p" ') are L, _,-measurable, k =2,...,n—1.
Thus, by the inductive hypothesis, the projection x,p is a point of density
of its accessible set A [x,p, S(p")] if and only if #,p is a point of density
of S(p™) and (p,...,p*!) is a point of density of S(p% ...,p") for
k=2,...,n—1. Accordingly, applying Lemma 2.7, it follows that p is
a point density of A[=,p, S(p")]x R if and only if =,p is a point of
density of S(p") and (p?,..., p*"!) is a point of density of S(p% ..., p"),
k=2,...,n—1. Therefore, by Lemma 2.6, we infer that p is a point of
density of (4 [n,p, S(p")]x R') n 8 if and only if p is a point of density
of S.and (pY, ..., p*!) is a point of density of S(p%, ...,p") for k =2, ...
«..y n. Thus, in view of Lemma 2.2, the theorem is proved.

2.9. ACCESSIBILITY COROLLARY. Almost every point of an L,-measurable
set i8 a point of density of its accessible set.

Proof. This follows at once from Accessibility Theorem, in view
of the well-known sectional density theorem (see, for example, Saks [4],
p. 215, for the case » = 2), which, in particular, asserts that for almost
every point p of an L, measurable set 8, n > 2, the projections (p?,...
..., p¥71) are points of density of the corresponding sections S(p* ..., p"),
k =2,...,n, which are L,-measurable by the Fubini Theorem.
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3. The Rademacher Theorem.

3.1. Definition. Let f: 8 — R be a real-valued function on a set 8
in R". Then we say that f is differentiable (or has a total differential) at
poe S if Vf(p,) exists at po and

lim £ (D) —=F (Do) = V(Do) (P — Do)l _
P, |2 — ol

3.2. LEMMA. Let f: 8 — R be a continuous real-valued function defined
on an open bounded set S in R". If f has first partial derivatives a. e. on 8,
then for every ¢ > 0 and y > 0 there exist a closed set £ = E(e) = 8 and
a number 6 = d8(e, ) > 0 such that

(i) L, (8 —E) < ¢;

(i) the first partial derivatives of f exist and are continuous at every
point p in E, and

If(q) —Ff(p)—Vf(p)(g—p) < ylg—p]

if ge A[p, E] and |q—p| < 6.

Proof. By the extended form of Egoroff’s Theorem (see Hahn and
Rosenthal [1], p. 124), the partial difference quotients converge uniformly
to the corresponding partial derivatives on a closed set £ = E(¢) = S
such that L,(S — E) < e. Furthermore, the partial derivatives are con-
tinuous on E. Then, for any y > 0, there exists § = J(¢, ) such that

0.

(1) If(@)—f(p)—1;(p) (& —)| < 5= I’ P
if |g—p| = |2'—p!| < é and xe E;
(2) i@ —f®) <5 i la—pl<.

Let ge A[p, E]. Set #, = p, x, = ¢, and ; = (¢, ..., ¢/, p*', ..., P")
for 1 <j<n—1. Then ;¢ E for j =0, ..., n, and if |g—p| < 9,

(3) f(@—Sf(p)-Vf(p)(¢—p)

< 2 If (25) —f (= _) —fi(x;) (¢ — p%)| + Z \f5 () —f3(2)| - 1¢’ — P

=1 j=1

n n
Y i_phyor ¥ i_pl —
<= D@ =P+ D@ —p) <ylg—l-

With (3) the proof is complete.
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3.3. LEMMA. Let f: 8 — R be a real-valued measurable function defined
on a bounded measurable set 8 in R"™. If f has locally bounded difference
quotients a. e. on 8, then for every e > 0 there exist a closed set ' = F(e) = 8
and numbers M = M(e) > 0, () > 0 such that

(i) L,(8 —F) < ¢;

(ii) f ¢8 Lapschitzian on F;

(iii) if pe F, qe 8, and |g—p| < 6, then |f(q9)—f(p)I < Mlig—p|.

Proof. We first select a closed set £ < § such that f has a locally
bounded difference quotient, and hence is continuous at each point of
E, and L,(S—E) < ¢/2. Now, for every positive integer %k, let B, denote
the set of all points pe E such that |f(p)| <k and |f(¢)—f(p)| < klg—p|
if ge S and |¢g—p| < 1/k. Then, clearly, E; is an ascending sequence of
sets, which, by the continuity of f on E, are closed. Since, by hypothesis,
f has locally bounded difference quotients at each point of E, we know
that £ = (J E,, and so L,(F — Eg) < ¢/2 for K large enough. Set F = Ei,

k=1

M = K, and 6 = 1/K. Clearly, (i) and (iii) of the conclusion hold. To
verify (ii) we take any ¢, p in ¥ and consider two cases. If |g—p| < 1/K,
then, by (iii),

If(9) —f(p)| < Klg—0pl.
If |g—p|>1/K, then

1f(q) —f(P)I < If(@) + 1f(p)| < 2K = 2K2(1/K) < 2K?%|q—p|.

Thus (ii) holds, where the Lipschitz constant is 2K2, and so the proof
of the lemma is complete. ‘

3.4. LEMMA. Let there be given any subset S8 of R™ and any point p
which is a point of (outer) density of S. Then, for each assigned n > 0, there
exists a & = 6(n) > 0 such that, for any qe R™ with |q—p| < 8, there corre-
sponds a point g* in S satisfying the inequality

(4) lg—q*| <nip—gl.

" Proof. This is a simple exercise, but may be found implicitly in
Rademacher [3].

3.5. RADEMACHER THEOREM. Let f: 8 — R be a real-valued measurable
Sunction defined on a bounded measurable set S in R". Then f is differe-
ntiable a. e. on S if and only if the difference quotients of f are locally bounded
a.e. on 8.

Proof. The necessity is obvious since the difference quotient is
locally bounded at every point at which the function is differentiable.
To prove the sufficiency suppose that the difference quotients are locally
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bounded a. e. on 8. Give ¢ > 0, and let ¥, M, and 6 = §, be the set and
numbers with the properties listed in Lemma 3.3. Since f is Lipschitzian
on F, it may be extended to be Lipschitzian on all of R" and, in particular,
on a bounded open set G containing F (see McShane [2]). Then f is of
bounded variation with respect to each coordinate variable, and so, by
the Lebesgue differentiation theorem, the first partial derivatives of f
exist a.e. on @G. Give y > 0. Then, in view of Lemma 3.2, there exist
a set £ c @ and a number 8 = §, such that L,(G—E) < ¢ the first
partial derivatives exist and are continuous at every point p in E, and

(6) 11(9)—f@)~Vi®)-(g—P)I < % lg—|

if ge A[p, E] and |¢—p| < d,.

Let E* = En F. Then E* is a closed subset of 8, and L, (S —E*)
< L,(8S—F)+L,(G—E) < 2¢. Let p be any point of E* which is a point
of density of A[p, E*]. Applying Lemma 3.4, choose d; > 0 so that for
every qe 8 there exists ¢*¢ E* such that

* Y .
(6) lg—q| < 3 lg—p| i |g—p| < d5.

Assume without loss that y < 3M. Then |¢—¢*| < |¢—p| and |¢*—p]|
<2|¢—p|. Let 8 = min(4,, d,, &;), take any g¢eS such that |q— p|
< 4, and choose g*e A[p, E*] so that (6) holds. Then, in view of (5),
(6), and (iii) of Lemma 3.3,

If(@Q)—f(@)—Vf(p) (¢g—n)
< If(@)—f(g*)|+ If(g*)—f(2) =V (D) (¢*—2)+ V(D) |lg—q*|

<Mig—q*I+%lg*—pl+ Mig—g°|

/4 4 4 = ylg—
<3 lg—pl+3lg—ri+3la—pl =7ig—2I.

Accordingly, in view of Accessibility Corollary (2.9), the proof is
complete.
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