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REARRANGEMENTS OF PERIODIC MULTIPLICATIVE
ORTHOGONAL SERIES

BY

S. V. BOCHKAREV (MOSCOW)

Let p = (p1y--., Pk, - -.) be a sequence of integers not less than 2 and put
My =1, My =p,...px. Forevery z € [0,1) we have

o0
T
z = kEFkk’ where zx € {0,1,...,px — 1}

(if this representation is not unique, we take a finite expansion). For k =
0,1,...let 7, be the function defined by

(1) Tx(z) = exp(2mizy/pk).

By definition 74(z) is a step function whose values run through the p;th
roots of unity. On the interval [0,1) there are M left-closed intervals of
constancy each of length 1/M;.

Now let {1,}32, be the set of all finite products of these functions.
Each natural number 7 has a unique representation n = Y 3. , ax M, where
ai € {0,1,...,pr4+1—1}. For such n > 1 we define the function ¥, (o = 1)

by [4]

@ n(2) = [[(ru(a))™.

k=0
This system is the complete set of characters of the countable direct product
of cyclic groups of order pi, transformed to the unit interval in a measure
preserving manner. The system {¢,} is said to be bounded if sup;p; =
K < oo.

The purpose of this paper is to obtain a lower estimate of a Weil multi-
plier for unconditional almost everywhere convergence of series with respect
to a bounded {%,} system and to establish certain statements concerning
upper estimates for a majorant of the partial sums for rearranged {v,} sys-
tems. For the Walsh system an estimate of a Weil multiplier was established
by the author [1]-{3] and independently by Nakata [6].

THEOREM 1. Let {,} be a bounded multiplicative system and let W (k)
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be an increasing sequence of numbers such that

(3) Z kW(k)

Then there ezists a sequence {ak} such that

oo

(4) ) laxPW (k) < o0

k=1
and there ezists a rearrangement o(k) of the natural numbers such that the
series

oo

z o (k) Vo(k)(T)

k=1
diverges almost everywhere.

Proof. We choose a sequence of numbers {¢,}, pn | 0, and an increas-
ing sequence of integers { N, } for which (cf. (3))

© Z i <
(6) Ni’ B
n=N,+1 W(M )

For every v = 1,2,... there exists an increasing sequence of integers
l. €[0,N,41 - N,) (n=0,...,2¢(v) + 1 for some ¢(v)), and an integer
p(v) € [2, K] such that (cf. (6))

(7 PN+, =p(v), n=0,...,2¢(v)+1,
2g(v)+1
By 1)

where B(K) is a positive constant.
For every v = 1,2,... we now define subgroups G} of functions {¥n}
and cosets HSY) of these subgroups. We set (cf. (1))

9 H®Y =¢gMGcW) — n=0,...,qw), m=0,...,(p(v))" -1,
where

(10) 9n0 = TN, +n. i m=0,

(11) 95.';)1 = TN, +i2a T N1+12-1+1 :’:mlah( y+1

if m = a1(p(v))** + a2(p(v))** + . . . + apm) (p(v)) ™, 1< aj < p(v) -1,
0 < 8 <82 < ... < Sp(m)- We define the subgroup G for n > 1



REARRANGEMENTS OF ORTHOGONAL SERIES 293

(Gg;) = {¢o}) as the direct product of n cyclic groups of order p(v) with
the generators

(v) Oh(m)
(12) gnmk - TN +12(-—k)TN,+lg(.1-5)+1 * TN"+13(lh(m)-h)+l’
where k = 1,...,n and we put by convention

TN.,+13(,.._|,)+1 =1 if k> s;.

The relations (9)-(12) show that the cosets H{%) are pairwise disjoint.

Forn =0,...,¢9(v) and m = 0,...,(p(v))" — 1 we define the sets E{
as follows. Let E(o) [0,1] and let

(13) B, = {s € B gih(z) = exp(2mik/p(v)) }

where k = 0,...,p(v) — 1. Combining (11) and (13), we obtain

(14) EMc...cE®c...c EY,

where m; = [m/(p(v))*] and therefore

(15) meas E(") = (p(v))™".

Since every ¥x € Hnm () can be represented in the form (cf. (9)-(12))
A (gmm ) (grma)™ - - - (84hn)™

where 0 < 3; < p(v) — 1, the function ¥, takes a constant value on the set
,(,?52 (cf. (13), (14)). Hence for some 0 < a(k) < p(v) — 1 we have

(16) Yi(z) = exp (21rz (( ;) z € E‘(,?:;,l,z,

for ¢ € HY. Let
(17) AY, = {k; v € HY ).

We define the coefficients {ax} for My, < k < My, s by

e i (k) P(Nu+12n+l) (v)
"P( 2 p(u))(p(u))nW(MN,+z,.+,)’ k€ Arm,

0 for all other k € [Mn,,Mn,,,).

(18) ax =
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From (5), (9)-(12) and (17), (18) it follows that

oo q(v) (p(v))" -1

ZlakI’W k)-EZ Yo Y lalPw(k)

1n=0 m=0 kGAS.",,).

oo q(v) (r(¥))" -1

< Z ZW MN +lan+1) Z Z |ak|2
tn=0 m=0  real)
oo q(v)
p(Ny + 12n+1) B (n)
B ; ; W(MN, +1304:) ~ E « W(M, y <

Hence the condition (4) is fulfilled.
We define (cf. (17))

(19) SOW)= ) ar(2).
keAL)
It follows from (13), (16)—(18) that

Ny +lan41) (n+1).
20 50 (z) = ntt) | ze BT,
20 )= WMy at0ars) P
(21) 150 (2)] = Letlantr) ¢ p,

W(MNV+12-+1) ’
and besides, since (cf. (21))
[ (88(2))?dz = |ISEIE,
E{M
we have
(22) SM(z)=0 if z¢EM.

We now define the desired rearrangement o(k). Let A(n,m) be a one-
to-one mapping of the set of pairs (n,m), n = 0,...,q(v); m = 0,...,
(p(v))™® — 1, onto the natural numbers in the interval

[1 (p(r))* ! - 1]

©op)-1 ]

We choose A(n,m) determined by the following conditions:
(23) A(n,m) > A(n,my) if m < my;

if s < nand ESY C ES**Y, where ¢ = p(v)l + k, then

(24) A(s,1 = 1) > Mn,m) > A(s,l) for k=0,

(25) A(8,1) > A(n,m) > A(s,1+1) for 1 <k < p(v).




REARRANGEMENTS OF ORTHOGONAL SERIES 295

For every fixed v = 1,2,... we arrange the sums SS:;,),(:L') so that the num-
bers A(n,m) increase. The sums EMN., <k<My,,, ar¥r(z) as a whole are

arranged so that v increases.

We define
(26) L(z) = max /\(n m),
zeEv(V)m
(n) _ (s+1)
(27) F(W = U ENED).

A(8,9)2M(n,m)

By virtue of (15), (20), (22), we have

1
@) [ Y Ss¥a)dz= 3 [ $%)(z)dz
0 X(n,m)<L(x) ISA(n,m)sfﬂ“)pl(q:"_z':'l 1 F(»)

g(v) (p(v))" -1

n=0 m=0 (n+1)
Eovym

%) p(N, + lang1)
P(V) « W(MN, +1304,)

Combining (21) with (22), we get the inequalities (cf. (13))

q(v) (p(v))" -1
(29) 0< ) SU@<Y Y 1sU@)

AMn,m)<L(z) n=0 m=0

(v)
< qz: R(Ny + lant1)

n=0 W(M~u+‘2n+l) '

Consequently (cf. (28), (29)), the sets

q(v)
. u A, )
(30) H, = {"” Z Sia(@) 2 2p(V) Z W(MNV+12..++11) }

A(n,m)<L(z)

satisfy

(31) meas H, > 1/(2p(v)).

Since the sets H, are independent (cf. (19), (30)), it follows from (31) that
(32) meas (limsup H,) = 1.

V—00
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Thus the series
oo g(v) (p(v))"* -1

San@=33 3 58

k=0 v=1n=0 m=0

satisfies the condition (4), and after a certain rearrangement of its terms, it
diverges almost everywhere (cf. (8), (30), (32)). Theorem 1 is proved.

Now we state certain upper estimates of a majorant of the partial sums
for rearranged {v,} systems.

THEOREM 2. Let {} be a bounded multiplicative system and let n(z)
be an integer-valued function such that ||n||c < My — 1 for some indez q
and

L
(33) n(z) = ) m;(a),
Ji=1

where the functions mi(z) (¢ = 1,...,L) have disjoint supports and are
decreasing on their supports. Then

n(z) M,-1 ) 1/2
(34) ”kz:% ak?ﬁa(lc)(fc)”1 < B\/-L-( Z |lak] )

for all rearrangements o(k) of the integers k = 0,..., My — 1 and for each
sequence of complez numbers {ay}.

Proof. We can assume that m;(z) are piecewise constant functions with
intervals of constancy of length 1/M,. Hence, we can use a discrete form of
integral in (34):

(35) ||Zak¢,(k)(z)|| Z |Zak¢,(k)a/Mq)
Let

n(l)
(36) S1 =) axthoqr) (1/My).

k=0

We define four sets of integers ! as follows (cf. (36)):

E,={l;Re$>0,ImS; >0}, E,={l;ReS>0,ImS, <0},
Es={l;ReS <0, ImS >0}, E,={l;ReS; <0, ImS <0}

Let (cf. (33), (35))
(38) A; = {l;! € suppm; }.

(37)
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Since for every j=1,...,4; i=1,...,L,

|s,|<| 3 Res,|+| ) Ims,|<f| ) s,|

leA NE; I€A;NE; IEANE; IEA;NE;
it follows from (35)—(38) that

n(z)
(39) ""Z:%ak%(k)(z)”l JZ_;;!‘GA'”E |

For every %, j there exists a decreasing sequence of sets of integers F,-(f) such
that

M,-1
(40) Yo Si= ) ar Y oI/ My).

lEA.’ﬂE,’ k=0 IGF-(-E)
ij

Combining (39) and (40), we obtain

n(z)
(41) ”Z ak"/’a(k)(z)”
M, -1 M, -
: %( > o) "33 (Zl( S ean(t/Mp) )"
k=0 j=1i=1 k=0 IGF‘(,-")
\/2_L L M;-1

<

(8 )" S T (5 wamn))”

J=1 =1 k=0 e p(h)
Let
Aij(k) = max{l € E;; mi(l) > k},
(,)_{1 if | € A0 E,
%7 =10 iflg¢A;nE;

Applying these definitions and using the fact that the functions m;(l) are
decreasing we have

Aij(k)
(42) Y voy(/Mg)= Y w{V(o(k)/M,) = Z e piN(a(k)/My),

1eF{ 1eFP

where 1/1,(1)(.1:) is the multiplicative system formed by the sequence {pg—i4+1},
1=1,...,q.
By virtue of the results of Hunt-Taibleson [5] and Gosselin-Young [4],
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we obtain
M,-1 X;j(k) 2
43) > (X DvV(ak)/My)
k=0 =0

My=1 Xij(a~'(k))

> (% QuMk/M,) < BM|4inE.

k=0 =0
Thus (cf. (41)-(43))
n(z) M,-1 124, L 1/2
llkgo akr,b,(k)(a:)”l <B L/Mq ( ’Z% |ak|2) ;(; IA,' N EJI)

< B\/_( Z ] )”2

This completes the proof of Theorem 2.

COROLLARY. If {9y} is the Walsh system and m(z) < 2V is « monoto-
nous function, then

m(x)
|3 axtocr(@], < Biaw)ut
k=0

for all rearrangements a(k) of the integers 0,1,...,2N — 1 and for all se-
quences of numbers {ar}, k=0,...,2V —1.

Remark. The monotonicity condition for the functions m;(!) can he
replaced by monotonicity after some rearrangement of the numbers 0 < [/ <
M, of type described in [4].

In this way the following statement can also be proved.

THEOREM 3. Let q be an integer and o(k) a rearrangement of the integers

k=0,...,M, - 1 Then for each sequence of complez numbers {a}
Z ak'ﬁa(k)(l‘)l”
< BM; | (ax)lls max| m lz ¥ @),
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