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Frames are algebraic analogues of topologies. They are nothing more
than complete Heyting algebras and they form a category in a natural
way (although not in the obvious way). Each topological space 8 gives
us a frame, namely its topology OS8, there are, however, many.non-spatial
frames.

The initial work on frames was done by Dowker and Papert in [2],
and by Isbell in [3]. This was later extended by Macnab in [4] and other
places. A survey of frame theory can be found in [5].

Given a frame H there is a canonical way of obtaining a super frame
NH together with an embedding H -~ NH. We call NH the assembly
of H. The elements of NH are essentially the kernels of frame morphisms
with domain H. -,

Since the assembly. NH of a frame H is also a frame, the second
assembly N*H and an embedding NH — N*H exist. In fact, for each
frame H there is a tower

H > NH - N*H -> N*H —» ...

of assemblies. It is known that this tower stops if and when a Boolean
frame i8 reached. It is also known that the tower can continue into the
transfinite and, in some cases, may never stop.

Beazer and Macnab in [1] have given a characterization of those
frames H for which NH is Boolean. In this paper we will look at the

topological significance of this result. In particular, we will obtain the fol-
lowing characterization:

THEOREM. For each T-space 8, the assembly NOS is Boolean if and
only if 8 is scaltered.

The layout of the paper is as follows.

In Section 1 we give the required topological background. In particu-
lar, we decompose “scattered” into its three constituent parts, only two
of which are relevant here. In Section 2 we give a very brief survey of
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frame theory and sct down the required preliminary facts. (A more detailed
survey of frame theory can be found in [5].)

In Section 3 we look at the assembly NOS of a space S. In particular,
we construct a fundamental commuting triangle

08 - NOS

(A) v

™ OFS
where I'S is a certain space (the front space) associated with 8. The map ¢
is a surjective frame morphism and is the clue to the analysis of NOS.
In Section 4 we use diagram (A) to prove the result stated above (in
a slightly more general form). We also characterize those spaces S for
which the map o is an isomorphism. We conclude the paper with examples
of spaces S such that the assembly NOS is not Boolean but the second
agsembly N*08 is, and examples of spaces § where N?0S is not Boolean.

1. Topological preliminaries. In this section we gather together all
the purely topological material which we use in the paper. In particular,
we look at the front topology of a space, and we analyze the notion of
a scattered space.

As usual, for each topological space S we let OS be the given topology
of 8. Occasionally we use C§ for the family of closed sets of S. We use
()" and (+)° for the closure operation and the interior operation of S,
respectively, and (-)" for set-theoretical complementation on 8.

The front topology of 8 is the smallest topology on 8 which includes
08U CS. We let FS be the set S topologized by the front topology and we
call ¥'S the front space of 8.

For each point p of 8 the closure p~, the hull p°, and the monad p*
of p are defined by

P ={XelC8:peX}, p°=\{Ue€O08:peU}, p*r=p°np .
We easily check that
B ={Unp~: UcO08,pe8}
is a base for F§; moreover,
>, ={Unp~: Ue08,p e U}

is an F-open F-neighbourhood system of the point p. Notice also that,
for p € 8, p* is the F-closure, the F-hull, and the F-monad of p.

We say that p €S is a Ty-point if p* = {p}, and we say that p is
a Tyxpoint if p* is F-open. Thus § is T, exactly when each of its points
is Ty. Analogously, we say that S is Ty if each of its points is T'5. The
significance of this concept is given in the following lemma.



BOOLEAN ASSEMBLILS 25

1.1. LEMMA. A space 8 i8 Ty if and only if its front topology OFS is
a Boolean algebra. '

Let us now look at scattered spaces and, in particular, at the notion.
of a relatively isolated point.

It is not hard to see that each scattered space is both T, and 7.
The main aim of this section is to produce a property (?) of spaces such
that

scattered = T+ Txr+(?).

In order to do this we must refine the notion of an isolated point.

1.2. Definition. Let 8 be a space, A a subset of 8, and p a point
of S. Then p is
(i) an <solated point,
(ii) a detached point,
(iii) a loose point
of A if there is some U € OS such that
(i) pe AnTU < {p},
(ii) pe AnTU < p*,
(i) pe ANU < p7,
respectively.
Trivially (since p € p* < p~), each isolated point of a set is detached,
and each detached point is loose.

1.3. LEMMA. For each point p of & space S the following are equivalent :

(i) p is T'p.

(ii) p <8 a detached point of some closed set.

(iii) The set p~ has a detached point.

(iv) There is some U € O8 such that p* = Unp~.

Proof. The three implications (i) = (ii), (ii) = (iii), and (iv) = (i)
are straightforward, so it is sufficient to show (iii) = (iv).

Suppose that ¢ is a detached point of p~, so there is some U € 08
with :

qgeUnp~ < p™.

But then, since g e U = p~, we have p € U so that p e ¢*. This gives
p* = q*, and hence Unp~ < p*. The converse inclusion is trivial, so
we have (iv), as required.

We have introduced the notions of a detached point and a loose

point in order to decompose the notion of an isolated point into three
consgtituent parts.

1.4. LEMMA. Let X be a closed subset of a space 8.
(i) The isolated poinis of X are exactly the T,, detached points of X.
(ii) The detached poinis of X are exactly the Tz, loose points of X.
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‘Proof. (i) Let p be an isolated point of X so that, for some U € OS,
XNU = {p}. Then, since X is closed, p* =< XN U so that p* = {p}.
This shows the p is a T-point. The other implications are trivial.

(ii) Trivially, each detached point of X is loose and, by 1.3, is also
a Tpg-point.

Conversely, suppose that p is a Tg, loose point of X. Then (since
p i8 loose) there is some U € 0S8 such that p e XNnU < p~, and (since
p i8 T'p) there is some V € O8 with p* = Vnp~. But then

peXnNUNV < Vnp~ =pt,

80 the p is a detached point of X, as required.
In Section 4 we will be forced to consider certain subsets of the space
.8 which, as subspaces, are bad, in the sense of the following definition.
1.5. Definition. A closed set of a space is immoral if it is the closure
of its set of loose points.

Thus a set is immoral if it lives off its loose points. In the next two
lemmas we show that immorality is concerned with having a smallest
F-closed generating set.

1.6. LEMMA, Let S be a space, let X € C8, and let L be the set of loose
poinis of X. If B is an F-closed set such that B~ = X, then L < B.

Proof. Let B be an F-closed set such that B~ = X and consider
:any p € L. Since p is loose, there is some U € 08 with
peXnUcp .

Now, for each V €08, if p € V, then p e UNnV so that (since p e L
.= X = B7) there is some point ¢ with

geBNUNV c XnUcp,

:and hence VN p~ meets B. This shows that p is a member of the F-closure
-of B, and hence, since B is F-closed, p € B, as required.

The next lemma gives us a characterization of immorality alluded
‘to above.

1.7. LEMMA. Let 8 be a 8pace, X € C8, and let L be the set of loose points
of X. The following are equivalent: '
(i) X =L~
(ii) There i3 a smallest F-closed set B such that B~ = X.
(i) X = L~ and L 18 F-closed.
Proof. (i) = (ii). Suppose that X = L~ and consider the family

F = {Be(CFS: B~ = X}
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of F-closed sets. Then ()& is F-closed and, by 1.6, L < (|#. But then
(M)~ = X so that (& is the required smallest member of .

(i) = (iii). Suppose that (ii) holds and let B be the given F'-closed
set. By 1.6 we have L < B, so it is sufficient to show that B = L.

Let p € B. The set BNnp~' is F-closed and does not contain p, so, by
the minimality of B, there is some U € O8 with

XNU #8, BAUnp~' =@.

We show that p e XNnU < p~, so that p € L, as required.

Consider any point ¢ € Xn U. Then, for each V € 08 (remembering
that B~ = X),

qeV =>qeUnV = UNV meets B = (IreS)[re BNTNV]
=>(Are8)[reVnp ]=>peV,

80 that ¢ € p~. Thus we have XNU < p~.

Now we know there is at least one member g of XN U, so there is
some member ¢ of UNp~. Thus p € U and, consequently (since p € B = X),
p € XN U, which completes the proof.

In the following “scattered” is defined in a non-standard way;
however (as we see later), this definition is equivalent to the usual one.
We choose to introduce scattered spaces in this way for the sake of uni-
formity.

1.8. Definition. A space S is
(i) scattered,
(ii) dispersed,
(iii) corrupt,
if each closed set of S is the closure of its set of
(i) isolated points,
(ii) detached points,
(iii) loose points,
respectively.
Notice that a space 8§ is corrupt exactly when each of its closed sets
is immoral.

1.9. THEOREM. For each space S the following are equivalent:

(1) 8 48 dispersed.

(i) Each non-empty closed set of 8 has a detached point.

(iii) Each non-empty set of 8 has a detached point.

(iv) 8 @8 both T, and corrupt.

Proof. The implication (i) = (ii) is trivial.

(ii) = (iii). Suppose that (ii) holds and let A be any non-empty set
of 8. By (ii), A~ has a detached point p, so there is some U e OS with

peA™nU < pt.
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Since p e AN U, we sce that U meets A, and so there is some point ¢
with
geAnUc A nU < pt.
But then g e pt so that ¢* = p*, and hence ¢ is a detached point:
of A, as required.
(iii) = (iv). Suppose that (iii) holds so that, by 1.3, 8 is T.
Now consider any X € CS and let I be the set of loose points of X.
If L™ # X, then XNnL™' # @ so that, by (iii), there is some p € § and
U € OS with
peXnL'nUcpcp.
But then, since L™'N U is open, p € L, which is a contradiction (since
p e L™’). Thus L= = X, as required.
(iv) = (i). This holds by 1.4 (ii).
The following theorem, whose proof is similar to that of 1.9, shows
that corruptness is the appropriate property (?) mentioned above.

1.10. THEOREM. A space S 8 scaitered if and only if it i3 both T, and
dispersed, that is exactly when it is Ty, Ty, and corrupt.

Finally, in the section we obtain a refinement of 1.7 which will be:
required later.

1.11. LEMMA. Let 8 be a space, X € CS, and let L be the set of loose

points of X. The following are equivalent:
(i) X =L~ and X — L i8 closed.

(ii) There exists a smallest open set B such that XUB = 8 and
(XnB)” =X.

(ili) X = L~ and L is F-open.

Proof. (i) = (ii). Suppose that (i) holds and let B = X'UL, so that B
is open. We show that B is the required set.

Trivially, XUB = 8. Also XNnB = L so that (XnB)~ = X. Con-
sider now any open set C such that Xu(C = 8§ and (XNnC)” = X. Then
XNnC is F-clopen so, by 1.6, L =« XNnC, and hence B < C, which gives
the required result.

(ii) = (iii). Suppose that (ii) holds and let B be the given set. Since:
X NB is F-clopen, it is sufficient to show that L = XNB.

By 1.6 we have L < XnB. Conversely, if p e XNnB, then

XU(Bnp™') = (XVB)N(Xup™') =8usS =8
and p ¢ BNnp~' so that, by the minimality of B,
(XnBnp™')” # X.
This gives us some ¢ € § and U € O8 with
geXnU, XnBnp'nU =09.
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But now (since g€ X = (XNB)~ and ¢q € U) there is some point r
with
reXnBnUc<p~.

Thus (since 7 € p~ and r € U) we have p € U so that
peXnBNnUcp,

and hence p € L, as required.
(iii) = (i). We show that, assuming (iii), the set A = X'UL is open.
Consider any p € A. If p € X', then p € A°. If p € L, then, for some
U €08,

peXnUcp”
and (since L is F-open) there is some V € O8 with
peVnp~ < L.
But then
peXnUnV c L
so that

pelnVcX'VUL =4

and again p € A°, which gives the required result.

2. Frame theoretic preliminaries. In order to describe our results we,
of course, need some general frame theoretic background material. In
this section we give a brief survey of this material. A more detailed survey
(without proofs) can be found in [5]. Some proofs and related results
can be found in [1] and [4]. The reader is recommended to consult [5]
before reading beyond this section.

We begin with a definition.

2.1. Definition. A frame H is a complete lattice H such that for
each element a of H and subset X of H the frame distributive law

anVX = \{arz: x e X}
holds.

We regard a frame as a (generalized) universal algebra with distin-
guished elements 0, 1 (the bottom and top, respectively), a distinguished
binary operation A, and a distinguished infinitary operation \/. The
motivating examples of frames are topologies. Thus for each topological
space S the topology OS8 of § is a frame where 0 =@, 1 = §, A is N (set-
-theoretical intersection) and \/ is U (set-theoretical union).

Each frame carries a Heyting operation o defined by

a>b=\V{recH: arnz < b}
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and having the characteristic properfy

arnz<beozxz<aoh.

In particular, each frame carries a pseudocomplementation opera-
tion (-)* given by
a*t =a>0.
For a topology OS8 we easily check that, for U, ¥V € 08,
UsV=(UuY)°, U"'=U0".

As with every pseudocomplemented lattice we say that an element @
of a frame H is Boolean if av a* = 1 and regular if a = a**. The Boolean
elements of a topology OS are exactly the clopen sets of 8, and the regular
elements of O8 are oxactly the regular open sets of 8.

/A frame morphism

7
H—>K
from a frame H to a frame K is a map f from H to K such that

f(0)=0, f1)=1
and, for each x,y € H and X < H,

fleny) =fl@)afly), [FIVX) =VS(X).

In the category of frames a monomorphism is exactly an injective
morphism but an epimorphism is not necessarily surjective (although,
of course, each surjective morphism is cpie).

‘We are concerned with the algebraic structure of a certain set of func-
tions on a frame H, namely the nuclei on H.

2.2. Definition. A nucleus on a frame H is a map j: H — H such
that the conditions
(1) = <j(@),
(i) j*(@) = j(=),
(iif) j(zA y) =j(@)Aj(y)
hold for all z,y € H.

As explained in [6], the nuclei on a frame H represent the kernels
of the morphisms H — K wi.h domain H.
For each element a of the frame H the maps u,, v,, w, on H given by

Ug(®) = avVE, v,(x) =a>2, w,(x)=(rx>a)>a

are nuclei on H. We will particularly be concerned with the w-nuclei
on a topology OS (one of which is the double negatlon or regularization
map U U~ =U"").
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For a topology OS there is a natural family of nuclei which include
the u-nuclei and the »-nuclei. For each subset A of S8 the map [A4] on 08
given by
[A1(U) =(AVT)°

is a nucleus of 8. We call these the standard nuclet of S. Notice that if A
is open, then [A] is just u,, and if A4 is closed, then [A4] is just v5, where
B =A4'.

2.3. Definition. The assembly of a frame H is the set NH of all
nuclei on H.

The fundamental result of frame theory is that the assembly of a frame
is itself a frame. In fact, we have the following

2.4. THEOREM. For each frame H the assembly NH of H is itself a frame
and the map

H > NH, a— u,,

i8 a mono-epimorphism. This embeddmg is am isomorphism exactly when H
48 a Boolean frame.

A brief description of the proof of 2.4 is given in [6] and the details
of the proof can be found in [1] and [4], here, however, we will not require
these details.

Since the assembly NH of a frame H is itself a frame, it also has
an assembly N?H (which we call the second assembly of H). In fact, woe
can iterate the assembly construction to obtain a tower

H > NH - N°H > N*H —~...
of assemblies. This tower will stop (or rather become constant) if and when.
a Boolean frame is obtained.
The following result, which is due to Beazer and Macnab ([1], Theo-
rem 2), characterizes those frames with Boolean assemblies. ‘

2.5. THEOREM. For each frame H the following are equivalent:
(i) The assembly NH i3 Boolean.

(ii) For each element & of H there is a smallest element b of H such that:
a<boand b>a=a.

It is the purpose of this paper to give a direct proof of the spatial
case of this result (that is the case where H is a topology OS8) and, conse-
quently, expose some of the reasons why this result holds.

We will use quite a lot the w-nuclei (as defined above). In particular,
we will require some simple fact concerning these nuclei. |

2.6. LEMMA. For each two elements a, « of a frame H and each nucleus
j on H the following hold:

(i) j S w, < j(a) = a.

() we(®) =1 < @ >a=a.
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2.7. COROLLARY. For each j, k € NH, if k <& j, then there is somea ¢ H
with j <w,, k<L w,.
We will give the details of the proof of the following lemma.

2.8. LEMMA. Let a be an element of the frame H and let § be a nucleus
on H such thal j < w, and

(Vo e H) [w,(z) =1 = j(z) =1].

Then, for each x € H, w,(x) = j(avV ).
Proof. We easily check that
'wa(a’vw) = a(w)’

80 it is sufficient to show that for ¥ = @ we have wa(é/) < j(y).
Consider any ¥ > a and let w = w,(y), so that

Yy>oa=woaKwoYy.
Also, y < w o> y so that, with 2 = (w o y) o a,

RLYS>aK<wW>OY,
and hence
2 =z2A(w>y)<a.

This gives 2 > ¢ =1, and hence w,(w > y) = 1.
Now j(w o y) = 1 so that, since (w > y)A w < vy, we have

w<j(w) =jw > y)Aaj(w) <jy),
‘which is the required result.

3. The assembly of a space. To analyze the assembly NOS of a space
8 we use the standard nuclei of 8. Each subset A of S gives us a standard
nucleus [4], to obtain, however, all such nuclei it is sufficient to use only
the F-open subsets of 8. This result, which is proved in 3.1 below, is due
{more or less) to Dowker ard Papert ([2], Lemma 14) and Macnab ([4],
Lemma 6.6).

Here and later we use (-)© for the F-interior operation of S.

3.1. LEMMA. For each two subsets A, B of the space S the following
hold:

(i) [4] =[4"]

(ii) [A] = [B] <« A" = B".

Proof. (i) Since A" < A, it follows trivially that [AP] < [4]. Con-
versely, consider any U, V in OS such that V< AuU. Then VnU' c A
80 that (since YN U’ is F-open) VNU’' < AU, which gives V < AUT.
This shows that

(AuU) < (ABuD)°,

which completes the proof of (i).
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(ii) Suppose first that [A] = [B]. Then, for each p e 8§,
pedAB = (AU € 08)[pe Unp~ = A]
= (AT e08)[pe U < Aup™']
=pel[d](p™’) = p e[B](p™)
=>peBup~' = peB.
Thus AP = B, and hence AP = BY. A similar argument shows that
BP = AU o that AP = BY, as required.
Conversely, if AY = BU, then (i) gives
[4] = [4"] = [B"] = [B],
which completes the proof of (ii).
Our main task in this section is to set up the basic commuting triangle
(A) where O8 — NOS is the canonical mono-epimorphism
08 - NOS, A~ [A],

and O8 — OFS is the insertion of O8 into OFS (and so is also mono-epic).
Notice that since 08 — NOS is epic, there can be at most one fill in mor-
phism o. We will show that this fill in is provided by the following definition.

3.2. Definition. For each nucleus j of the space 8§ let

o(j) = UL(0)—U: Te08)
so that o(j) is an F-open set of S.
Sometimes it is more convenient to use the following description
of .

3.3. LEMMA. For each nucleus j of the space S and each p € 8,

peo(j)=pejp™).
Proof. The implication < is trivial since p ¢ p~’.

Conversely, suppose that p € o(j), so there is some U e 08 with
pej(U), p ¢ U. But then U < p~’ so that p €j(U) < j(p~’), a8 required.

3.4. COROLLARY. For each j, k € NOS,

(i) o(jA k) = o(j)Nno(k),

(ii) j <k = o(j) < o(k).

In the following (in 3.6) we show that o is a frame morphism and so has

a nucleus, which lives on NOS. The following lemma shows that this
second nucleus attempts to standardize the members of NOS.

3.5. LEMMA. For each F-open set A of the space 8 and each nucleus

j of 8,
(i) o([4]) = 4,

3 — Colloquium Mathematicum XLIII.1
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(il) j < [A] = 0()) < 4,
(iii) j 7s standard <-j = [a(j)].
Proof. (i) Using 3.3 we have, for each p € 8,

peo([A]) »pe(Adup™’)
(3T e08)[peUc Aup™’]
< (AU e08)[peUnp™ = A]<pedY,

and so the result follows since A is F-open.

(ii) The implication = follows from 3.4 (ii) and from (i).

Conversely, suppose o(j) < A so that, for each U €08, j(U)c AV T.
But then j(U) < (Au U)°, and hence j < [4], as required.

(iii) The implication = follows from 3.1 (i) and from (i), and the impli-
cation < is trivial.

Using these preliminary lemmas we can now obtain the main result
of this section.

3.6. TUrOREM. For each space S the map o (of 3.2) i8 the unique mor-
phism NOS — OFS8 such that ( ) commuies. Moreover, this morphism s
surjective.

Proof. By 3.4 (i) the map o is a A-morphism, and by 3.5 (i) o pre-
serves bounds (since the bottom and top of NOS are [@] and [8], respec-
tively). '

Next consider any J < NOS and let 4 = (_Jo[J] so that A is F-open
and, by 3.4 (i), 4 < o(\/J). Also, for each j € J, o(j) = A so that 3.5 (ii)
gives j <[A], and hence \VJ < [A]. But then another application of
3.5 (ii) gives o(\/J) = 4 so that

o(VJ) = JelJ].

This shows that ¢ is a frame morphism, and 3.5 (i) proves that ¢
is surjective and that ( A) commutes. Finally, we note that since 08 -~ NOS
is epic, there is at most one fill in morphism o, and so the proof is completed.

This morphism ¢ enables us to compute psendocomplements in NOS
and, in particular, to determine the regular nuclei of 8. To do this we
use the pseudocomplement operation of OFS.

3.7. Definition. For each F-open set A of the space § let A* be
the pseudocomplement of A in OFS, that is, the sct-theoretical complement
of the F-closure of 4.

The following lemma, which explains our choice of notation, genera-
lizes a result of Macnab ([4], Lemma 6.2).

3.8. LeMMA. For each nucleus j of the space 8, j* = [a(j)*].
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Proof. Let A = o(j). By 3.5 (ii) we have j < [4] so that
JA[A*]1 < [A]IA[4A"] = [ANnA*] = [9],

and hence [4*] < j*.
Conversely, if jA k = 0 for k € NOS, then

o(j)ne(k) = o(jak) =0

so that o(k) < o(j)’, and hence (since o(k) is F-open) o(k) = A*. But
then
k< [o(k)] < [4"].
This shows that for k € NOS
IANE =0k [47],
which gives the required result.

3.9. COoROLLARY. For each F-open set A, [A]* = [4*].

Finally, in this section we obtain a description of the regular nuclei
of § and a partial description of the Boolean nuclei. To do this we use
the corresponding results for standard nuclei.

3.10. LEMMA. For each F-open set A of the space S,
(i) [A] 7s regular <> A i8 F-regular,
(it) [A] 48 Boolean = A 8 F-clopen.
Proof. (i) The nucleus [4] is regular if and only if

[4] = [AT” = [4™]

which, by 3.1 (ii), occurs exactly when 4 = A**, i.e., when A is F-regular.
(ii) Suppose that [4] is Boolean so that
[4]v[4%] = [A1v[4T =1,
and hence '
AUA* = 6([A])Ve([4"]) = o([4]v[4"]) = 8.
Thus, sincc ANA* =@, we have A’ = A* and so A is F-clopen.
3.11. COROLLARY. For each nucleus j of the space 8,
(1) j is regular < j s standard and o(j) is F-reqular,
(i) j is Boolean = j is standard and o(j) is F-clopen.
We do have a partial converse to the implication of 3.10 (ii). We
easily check that for each two subsets 4, B of 8
[4]A [B] = [ANnB].
Also, when A4 is open, we sce that
[A]v [B] = [AUB]
as follows.
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Let j = [A]v [B]. Then, remembering that A is open, for each U € 08
we have

[4UB)(U) = (AUBUT)° = (BU(4U T)°)°

= [B]([41(D)) = [B1(j(U)) = 5*(U) =3j(0)
so that
[AVuB] < [A]v[B].

The converse comparison is trivial, so we have the required equality.
This shows that for each open set 4 and for each closed set Y

[A]A[4'] = [9], [4]lv[4'] =[8],
[(X'IA[Y] =[9], [Y']v[Y]=I[8],
8o that [A] and [Y] are Boolean nuclei. In particular,
[AvY] =[AVvY]

is a Boolean nucleus.
This observation will be used in the proof of 4.3 below.

4. The main results. We can now quite quickly obtain our main
results, but first we need just one more preliminary lemma. This is a spatial
version of 2.6.

4.1, LEMMA. Let A be an open set of the space 8 and let X = A'. The
Sfollowing hold:
(i) For each F-closed set B,

[B'l<wy,<(BNnX)" =X.
(ii) For each open set B,
wy(B) =8< (BnX)” =X.
Proof. For each F-closed set B we have
(BNX)" =X <« (B'VA)’ =A<« [B']4) =4
8o that (i) follows from 2.6 (i). Furthermore, for each open set B we have
B> A =(B'VA)°

so that (ii) follows from 2.6 (ii).

The first result of this section is a characterization of the standard
w-nuclei of S. We show that these are in one-one correspondence with the
immoral closed sets of S.

4.2. THEOREM. Let S be a space, A € 08, X = A', and let L be the set
of loose points of X. The following are equivalent:



(i) w, s standard.

(ii) X 8 immoral.

(iii) L ¢8 F-closed and w, = [L'].

Proof. (i) = (ii). Suppose that w, is standard, so there is some
F-closed set B with w, = [B’]. By 4.1 (i) this gives (BNX)~ = X.

Now consider any ZF-closed set C such that ¢~ = X. Then (since
C c X) 4.1 (i) gives

[C'l<w, =[B]

so that (by 3.4 (ii) and 3.5 (i)) ¢' < B’, and hence B < C. In particular,
with C = X we see that B c X.

This shows that B is the smallest F-closed set such that B~ = X,
and so, by 1.7, X is immoral.

(ii) = (iii). Suppose that X is immoral; so, by 1.7, X = L~ and L
is F-closed. By 4.1 (i) we have [L'] < w,. We will use 2.8 to show that
w, = [L']).

Consider any U € 08 such that w,(U) = 8. By 4.1 (ii) we have
(UnX)” = X, 80, by 1.6, L < UnX, and hence L'V U = 8, which gives
[L']J(U) = 8. Thus, using 2.8, for each U € 08 we have

wy(0) =[L'J(AVT) = (L'vX'VTU)° = (L'VvU)° = [L'(T)

so that w, = [L'], as required.
The implication (iii) = (i) is trivial.
In the next result we refine 4.2 to characterize the Boolean w-nuclei

of §, and so (remembering 1.11) we obtain a direct proof of the spatial
case of Lemma 10 in [1].

4.3. THEOREM. Let S be a space, A €08, X = A’, and let L be the
set of loose poinis of X. The following are equivalent:

(i) w, 8 Boolean.

(ii) X <8 tmmoral and L i8 F-open.

Proof. (i) = (ii). Suppose that w, is Boolean so that, by 3.11 (ii),
there is some F-clopen set K with w, = [K]. But then, by 4.2 and 3.1 (ii),
X is immoral and L' = K, which gives (ii).

(ii) = (i). Suppose that (ii) holds so that, by 4.2, w, = [L'] and L
is F-clopen. Also, by 1.11, the set ¥ = XNL’' is closed. But now L'
= AUY, so, by the remarks at the end of Section 3, w, = [AU Y] and
is Boolean, which gives (i). '

In the next two results we convert the above-given two local charac-
terizations into global characterizations.

4.4. THEOREM. For each space 8 the following are equivalent:
(i) The morphism o of (A) is monic (and so is an isomorphism).
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(ii) Fach nucleus of 8 is standard.

(iii) 8 <8 corrupt.

Proof. (i) = (ii). Consider any nucleus j of S and let A = ¢(j). Then,
by 3.5 (i), we have o(j) = A = o([A]) so that, when ¢ is monie, j = [4],
which gives the required result.

(ii) = (iii). This follows from 4.2.

(iii) = (i). Suppose that 8 is corrupt and consider two distinet nuclei
i,k of 8. By 2.7, j and k are separated by a w-nucleus, so (by symmetry)
we may suppose that there is some 4 € 08 with j<w, and k K w,,.
But then, since 8 is corrupt, 4.2 gives us some F-open set B with j < [B]
and k<{[B]. Now 3.5 (ii) gives o(j) < B, a(k) £ B so that o(j) # o(k),
as required. '

The following result is the spatial version of the Beazer and Macnab
characterization ([1], Theorem 2).

4.5. THEOREM. A space has a Boolean assembly if and only if it is
dispersed.

Proof. Suppose first that § is a space with a Boolean assembly.
Then each nucleus j of 8 is Boolean so that, by 4.3, 8 is corrupt.

Now o is surjective so that OFS8 is the image of a Boolean frame NOS,
and hence OFS is also Boolean. Thus § is Ty so that, by 1.9, 8 is dis-
persed.

Conversely, suppose that § is a dispersed space. Then § is both 7'y
and corrupt so that NOS is isomorphic to the Boolean frame OFS, and
hence NOS is also Boolean, as required.

Using 4.5 we can produce many spaces 8 such that NOS is Boolean
but O8 is not. (We simply take a non-discrete scattered space.) Also,
using 4.4, we can find spaces S such that N*08 is Boolean but NOS is not,
and spaces § such that N?0S8 is not Boolean. We conclude this paper
with some such examples.

Let (8, <) be a Dedekind complete linearly ordered set with a first
point. For each a € S let

Ua) ={xe8: v<a}, X(a)={xel: a<ua}.

We easily check that {U(a): a € 8} are the proper open sets of a
topology on 8 (which we call the associated topology of 8). The non-empty
closed scts are exactly the sets X (a) for a € 8.

For ecach a € § we have a- = X(a) so that

ceX(a)nS c a,

and hence a is 2 loose point of X. Thus (sinece a~ = X (a)) X (@) is immoral,
and so the space S is corrupt. Hence, by 4.4, NOS is isomorphic to OFS.
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The canonical base for the space F'S is the set of all U(b)nX(a)
for a,b e 8. Now, if b< a, then U(b)n X(a) is empty, otherwise it is
the interval [a, ). Thus OFS is generated by the left closed right open
intervals of 8.

The space F'S is T, so that OFS is Boolean if and only if 'S is discrete.
This occurs exactly when for each a € 8 there is some b € 8 with [a, b)
= {a}, that is, when each element of § has an immediate successor or,
equivalently (since S is Dedekind complete), when 8 is well ordered.

The space FS is also T, so0, by 1.10 and 4.3, N20S8 = NOFS is
Boolean exactly when FS is scattered. This occurs when for cach non-
-empty set A of S there are a, b e § with An[a,b) = {a}.

These remarks enable us to give the following examples.

4.6. Examples. (a) For cach of the following order types u the as-
sociated space S of x has a non-Boolean assembly but does have a Boolean
second assembly:

(i) 4 = 1+ a*, where a is an infinite ordinal;

(ii) p =14 0o*+ w;

(ili) g =14 0*o.

(b) For each of the following order types u the associated space of u
has a non-Boolean second assembly:

(iv) g =144

(v) p =14+ (w+1)A
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