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1. Introduction. Let J, and I, denote the Bessel potential and Riesz
potential operators on R" for € R, J, : §'(R") — S'(R") defined by
(Ja£)MNE) = (1 +€1?)~2/2f(€) and I, : S'/P — S'/P, where P denotes the
space of polynomials, defined by (I, f)"(¢) = |€|~*f(€). If B is any space
of tempered distributions, we can define Sobolev spaces based on B using
these potential operators, Jo(B) and I,(B), to be the image of B under
Jo and I, respectively. Roughly speaking, for a > 0, I,(B) is the space of
tempered distributions having derivatives of order a in B, and J,(B) is the
space of tempered distributions having derivatives of orders < a in B, and
we refer to these as the homogeneous and non-homogeneous Sobolev spaces
of order a based on B. Of course we will need to know that B is preserved
by certain basic singular integral operators in order to have a useful Sobolev
theory. While the inhomogeneous Sobolev spaces are usually preferred since
they can be defined without factoring out by polynomials, one frequently
gets sharper results by using the homogeneous Sobolev spaces.

In this paper we investigate the spaces I,(H?), where HP denotes the
Hardy spaces HP(R"™) of Fefferman—Stein [FeS] and 0 < p < 1. We give
I(HP) the quasi-norm ||Io f||1,(m») = || fl| i+ for some choice of quasi-norm
on H?. The H? spaces form a natural continuation of the L?P spaces to
the range 0 < p < 1, and so the Sobolev spaces I,(HP) are a natural
generalization of the homogeneous Sobolev spaces I,(LP) to the range 0 <
p < 1. For a > n(1/p — 1) the distributions in I,(H?) coincide with locally
integrable functions, and we will prove results only in this range. If n(1/p—
1) < a £ n/p and q is defined by 1/¢ = 1/p — a/n (note 1 < ¢ < )
then the fractional integration theorem (see [CT, Part II, Theorem 4.1}, [J])
implies that each element in I,(H?) (initially defined modulo polynomials)
can be identified with a unique function in L9, with || f||g < ¢|| f|| 1. (rr») (see
§ 4 for the case ¢ = o0).

The main result is a characterization of the quasi-norm of functions in
I,(HP?) in terms of difference quotients. Let k be an integer, ¥ > a, and
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define

Pralr)) =°( I J lA':yf(z)|dy)2,i’;a)m

where A% denotes the kth difference operator (inductively Af, f(z) =

Ak l( f(a: + ry) f(z))) and B denotes the unit ball in R" (actually all
that is needed is that B be a bounded set with non-empty interior). Also

let
s~ (e 2 () e )

0
ifk—1 < a < k. We proved in [Str] that f € I,(LP)if and only if Dy o f € LP
fork>aand 1< p<oo.

THEOREM 1.1. Let0 < p< 1, and a > n(1/p-1).

(a) Assume k > a. Then the estimates

c(p, k’a)"f”Ia(H”) < ”Dk.af”p < c,(pvk7a)”f"1a(H’)

hold for all f € I,(HP).
(b) Assume k — 1 < a < k. Then the estimates

(p, k, @) fll ooy < W Tk,afllp < (2o Ky )| fll 1 rre)
hold for all f € I,(HP).

We will prove this theorem in the next two sections, using the atomic
decomposition of HP, and a general g-function characterization of HP of
Uchiyama [U]. A different proof of part (a) of this theorem is given in the
monograph of Triebel [Tr] (the proof is given for inhomogeneous Sobolev
spaces based on local hP spaces, but these are relatively trivial differences).

It is also possible to characterize the I,( H?) quasi-norm by other variants
of the functionals Dy, and Tk ,. For example, if @ < 2 we can use a
symmetric second difference f(z+ry) 2f(z)+ f(z—ry) in place of A2, f(z).
The proof is pretty much the same.

In connection with this result we mention the following relatively trivial
facts which follow from the boundedness of singular integrals on H?:

a) if a > 0 then J,(HP) = I,(HP)N H? ;

b) if k is a pasitive integer then f € I,(HP)if and only if (8/0z)P f € HP
for all |B] =

c)if @ > k then f € I,(HP) if and only if (8/8z)°f € Io_x(HP) for all
18] =

All these results come with corresponding estimates.
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As an application of the theorem we prove that I,,;,( H?) forms an al-
gebra (the case p = 1 is due to Dahlberg [D]). Finally, we prove an atomic
decomposition for I,(HP). For related results see [FJ1], [FJ2].

Trace properties of the spaces I,(HP) are discussed in Torchinsky [To].
A recent paper of Dappa and Trebels [DT] gives analogous characterizations
for anisotropic Sobolev spaces (extending results of Bagby [B]) in the range
1 < p < oo. It seems likely that their results can be extended to the
anisotropic HP? spaces of Calderén and Torchinsky [CT].

Note that the estimates in Theorem 1.1 are proved under the assumption
that f € I,(H?). It would be very desirable to drop this hypothesis, and
to show that Dg of € L? or Ty of € LP already implies f € I,(H?) under
the conditions on k, a given in the theorem. But we have not been able to
verify this conjecture, or even the weaker conjecture that Dy of € L? and
f € L1 (where1/qg=1/p—a/n)implies f € I,(HP). It would seem that all
that is required here is a variant of the standard cut-off function techniques,
but they are poorly adapted to H? spaces. Perhaps some of the methods
of [FoS] or [FJ1], [FJ2] might be useful. The author is grateful to Richard
Bagby for pointing out this problem.

2. Estimates from above. In this section we prove the estimates from
above for || Dg o f||p in Theorem 1.1, using the atomic decomposition of H?.
We have to show that if f = I,g for g € H? then Dy of € LP provided
n(l/p—1) < a < k, and Ty of € L? if also @ > k — 1, with ||Dy o f||lLr <
c||glle and ||Tk,ofliLe < ¢||g|lzr». By the atomic decomposition theorem
([C], [CW], [L]) we can write g = Y2, Aia; where (Yoo, |,\,-|P)1/p =~ ||g|lz»
and the a; are (p, q)-atoms (for fixed ¢, 1 < ¢ < 00). Recall that such an
atom is defined to be a function satisfying

(i) suppa C @ a cube,

(ii) [lallg < 1QIY/e-YP

(iii) [zPa(z)dz = 0 for |B] < n(1/p - 1).

Write b; = Ia;. Then f = Y2, A\ib; and we have D o f(z) < Yoo, |
X Dk obi(z), hence

1DkaflZs < [ (X MilDkabi(2)) dz < [ 3 INIP Dy abi(z)? de

because the /'-norm dominates the /1/P-norm. A similar estimate holdé for
Tk,of. Thus it suffices to establish

LEMMA 2.1. Suppose n(1/p—1) < a < k, and fiz q with 2 < q < 0.
Then there is a constant M such that | Di ob||Ls < M ifb=I,a and a is a
(p, q)-atom. If in addition a < k — 1 then || Tk qob||L» < M.

Proof. Because everything is translation invariant we may assume that
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Q is centered at the origin, and a simple dilation argument shows we may
also assume |@| = 1. We make the choice (modulo polynomials) of

b(z) = ca [ |z - y|*"a(y) dy

for a not an integer > n (in that case we have a similar expression with
logarithmic terms). Then we have the estimate

(2.1) 1(8/02)P(=)| < cla|*—m=i-1-10

for |z| > 2 where j = [n(1/p—1)], provided « is not an integer > n. Indeed,
we have

(8/02)°b(z) = ¢ [ a(y)[(8/9z)’|z — y|*~™ - T;(y)] dy
Q

where Tj(y) is the Taylor expansion of (8/0z)P|z — y|*~™ about the point
y = 0 of order j, because of property (iii) of atoms. But it is easy to see that
the quantity in brackets is O(|z|*~"~7-1-Ifl) as z — oo for y € Q. Even
if o is an integer > n, we have the same estimate with logarithmic factors.
Finally, it is easy to see that b is locally bounded, so for 8 = 0 we have the
estimate

(2:2) lb(z)] < e(1 + |z[)>="=71

with additional logarithmic factors if a is an integer > n.

Now to estimate ||Dg ob||L» we will use a separate argument for the
regions |z| < 4 and |z| > 4. For the first case we use the estimate || Dy ob||2 <
c||el|2, which is a trivial exercise using the Plancherel formula (see [Str] for
the case k = 1) and Holder’s inequality with exponent 2/p > 1 to obtain

(J IDk,ab(z)|Pda:)1/ T<e( [ |Dk,ab(z)|2d:c)l/2 <clafls < M.
|z|<4 lz|<4

For the second region we break up the r-integration in the definition
of Di ob(z) at the point r = |z|/2k. For r < |z|/2k we use the mean
value theorem to write A%, b(z) = 3 5/=4(r9)?(9/0z)Pb(z") for some z' with
|2'| > |z|/2. Then the estimate (2.1) yields |AX b(z)| < erk|z|*—m—i=1-k,
Thus

ey (O (Jiapera) )" e

lz|>4 0 B
} lzl/2k
<o [ (f epemnmien ot )" gy
lz1>4 Y

S c f |2I-P(ﬂ+j+l) dz S M
|24
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sincek—a >0and p(n+j+1) > n.

When r > |z|/2k we estimate each of the terms b(z+rmy)for0 < m < k
that enters into Af b(z) separately. The m = 0 case is easiest, for by (2.2)
we obtain

oo /2
J ( J (f|b(z)|dy)zrl‘_f;a)p dz<e [ |z|"Pm de < M.
B

lz124  ° |=|/2k |z1>4

To estimate the remaining terms we break up the y-integration into the
region By = {y € B: |zt +rmy| > |z|/2} and B, = {y € B: |z + rmy| <
|z|/2}. For the integral over B; we can use the same estimate as above. For
the integral over B; we use the estimate

[ Ib(z+rmy)ldy <c [ (1+|z+rmy|)*"""1dy
Ba B>
<er™™ f (1 + Ju|)* """ du
lul<|zl/2
<er™™(1+e|*™7),

hence
oo /2
f ( f (f |b(:::+rmy)|dy)2 i’;a)p dz
1z1>¢ Nz|/2k  Ba r

o0

. /2
<e f ( f (1+ |z|*~i71)2p-2n"1-2a dr)p dz
Iz124  |=z|/2k

. \P
<ec f (1 + |a:|°"-"1) || P("t ) dz < M
|| >4

provided @ > n(1/p — 1). Summing all the estimates obtained yields
[|Di,abllr < M .

The proof of the estimate for Ty , in place of Dy 4 is similar. In the
region |z| < 4 we use the Plancherel formula estimate ||Tk bz < c||a2
(here we use a > k — 1 in order to have

fo'e) k-1 ,. 2

. (iry- ™| dr _
f e'rve — Zo m! rl¥2a clé]=2).
0 m=

For |z| > 4 we break up the r-integral at r = |z| , and for r < |z| we obtain
the analogue of (2.3) using Taylor’s formula with remainder instead of the
mean value theorem to estimate

ry)P A
b(z +ry) — Z -(—;;'L (%) b(z)

iBI<k

< crk|z|°-n_j-l-k .
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When r > |z| we have already estimated the b(z + ry) term, so it remains

to estimate
00 2 p/2
dr
f (f (f dy) ,.1+2a) dz
B

L ([ ewr (%)ﬁb(z)

for |3| < k — 1. But since @ > k — 1 we have |3 < a so the r-integral
converges and by (2.1) we can dominate this by ¢ f_-, |z|P("*+/*1) dz.

If o is an integer > n , the logarithmic factors in (2.1) do not materially
alter the proof since we still have [, |z|~P(n+i+D) (log |z|)Ndz < M .

3. Estimates from below. In this section we prove the estimates from
below in Theorem 1.1 using the generalized g-function characterization of
H? quasi-norms of Uchiyama [U] (Main Theorem and Example 4). The idea
of the proof goes back to Stein [St]. For ¢ € S with f¢ =0 let

oo 1/2
3N = ( floer $2PS)
0

Then [|go(H)llp = || flla» provided ¢ does not vanish identically on any ray
through the origin. Thus it suffices to establish

LEMMA 3.1. There ezists ¢ € S with [, o =0 and with ¢ not vanishing
identically on any ray {t€ : t > 0}, € # 0, such that
(3.1) 90(f)(z) < Do F)(z)
if F = I,f provideda > n(1/p—1) and k > a. A similar estimate holds
for Ty o if also a > k — 1.

Proof. We begin by choosing a function h € S such that A vanishes in
a neighborhood of the origin. We then set

k —1\k-m
w@)= 3 S (Fn(-a) and o= L.

n
m=1 m

Because 3 vanishes in a neighborhood of the origin we have ¢ € S and
f ¢ =0, and it is easy to choose h so that @(t£) does not vanish identically
in ¢ for any £ # 0.

Now a simple computation (using [ h = 0 ) shows
(3.2) pr* f(z) =17 x F(z) =17 f A:F(z)ht(y) dy.

Let A denote the annular region {y: 1/2 < |y| < 1}. Then we can write

[ fydy=c [ [ f(ry)dyr™dr
R* 0 A
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and so
o0

loe x f@) < ct™ [ [ |A%, F(z)||hi(ry)| dyr™~" dr
0 A

o0

<ctm* [ [ A% F(z)ldy H(r/t)r" " dr
0 4
where we have set H(t) = sup, ¢4 |2(ty)|. We can write this as
(>}
(33)  tVlex f2) < [ K@) (rme [ Ak F(2)|dy) dr
0 A

where K (t,r) = t—*~"~1/2pn=1/2+a g (7 /t). Since

9o(£)(@) = 17201 + f(2)l|La(ar)
and
Di,o(f)(z) 2 ” [ 14, F(z)| dyr~1/2-=
A

L2(dr)

we see that (3.3) implies (3.1) provided the integral transform with kernel
K(t,r)is bounded on L? of (0, 00). But K(t,r)is homogeneous of degree —1,
so the famous Hardy-Littlewood-Pdlya theorem applies, and the condition
we need to verify is

(o o] [0 o]
(3.4) f KQ,r)yr~Y2dr = f r*~1+e g (r)dr < oo.
0 0

But this is obvious since h € S.

For Ty o the argument is similar. We choose h as before but now set
¥(z) = h(-z), and ¢ = In%. Then

(3-5) Pt * f(a:) = t—a’lpt * F(:c)
B B
=t f (F(z +y) - Z %T (5%) F(z)) he(y) dy

18I1<k

because the moments of h; vanish, and this is the analogue of (3.2). The
rest of the proof is then the same. =

Remarks. The conditions on a are not really required (only a > —n
is required in (3.4)). With a little more work we can prove the estimate
9(f)(z) < €Tk o F)(z) where g(f) is the usual Littlewood—Paley function.
For this we need to take A(¢) = |¢|'*e~Kl and A(€) = ¢;|¢|*e~Kl. The
condition @ > k — 1 will imply the vanishing of enough moments to obtain
(3.5), and the estimate (3.4) will hold because h(z) = O(|z|"~*"2) as
z — 00. The fact that g(f) € L? implies f € HP was already established in
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Fefferman-Stein [FeS]. However, there is no obvious way to obtain g( f)(z) <
¢Dy o F)(2).

4. Pointwise multipliers. In the range n/p > a > n(1/p - 1) we may
regard I,(HP) as a space of functions in L9, where 1/¢ = 1/p—a/n, and so
the operation of multiplication by a function g is well-defined for elements
of I,(HP). We call g a multiplier if this operator is bounded on I,(H?). If
every element of I,( H?) is a multiplier then I,(H?) forms an algebra under
pointwise multiplication. This happens exactly when @ = n/p, and it is
interesting because the analogous statement is false for 1 < p < oco. The
case p = 1 is proved by Dahlberg [D].

THEOREM 4.1. I, ;,(HP) is an algebra under pointwise multiplication for
0<p<1,and||fglls,, e < cllfllr,, o) llgll1, 1)

Proof. Choose k > n/p. We will show Dyx_y n/p(fg) € LP. Now
we claim that I,,/,(H?) C Co and ||fll < ¢||fll1,,,(s)- By the frac-

tional integration theorem it suffices to establish this for p = 1, and in this

case by the atomic decomposition theorem we may assume f is an atom.

Then I f(z) = en [ f(y)log|z — 3l dy = cx f, f(4)log|z — yl/|z| dy. The

first expression and the H!-BMO duality shows that I,, f is continuous and

II{nf|loo < ¢, and the second expression shows I, f vanishes at infinity.
Now a simple combinatoria.l identity yields

A% fo(z) = E E(cm [ Ak, f(z + mry))g(z + try)

m=0 £=0
+ o f (2 + Lry) A7, 9(z + mry))

for certain coefficients c,n,¢ and ¢}, , whose exact value does not matter for
our purposes. It follows that

|AZE=1 fg(z)| < ¢ Z(IlglloolA of (@ + mry)| + || flleo| Ak 9(z + mry)])

m=0

and this would yield

Dik_1,n/p(f9) L N9llco Pk nsp(f) + | fllooDk,nyp(9)

except for the appearance of z + mry in place of z. However, this leads to
a harmless variant of Dy ,/, and so we conclude

. ”DZk-l.n/p(fg)"L’ < c"f”I./,(H’)"g"I./p(H’) .
To complete the proof we need to find a dense subspace H} of HP such that
Iof-1Iog is a priori in I,(H?). For Hf we may take the functions f such

that f € D and f vanishes in a neighborhood of the origin. The density is
proved in [CT, Part II, Theorem 1.8]. Then I, f - I, g clearly belongs to S,



SOBOLEV SPACES 137

and S C I,(HP) for a > n(1/p—1) follows by the same theorem of Calderén
and Torchinsky. =

Remark. If we could prove the conjecture that Dy of € L? and f €
L? implies f € I,(HP) under the conditions of Theorem 1.1(a), then we
could show that the characteristic function xg of a Lipschitz domain 2 is a
multiplier on I,(HP) provided n(1/p—1) < @ < 1/p. The proof (for a < 1)
entails showing
Dy ,o(x0)(z) £ cdist(z,002)~
using ideas from [Str]. For related results see [Tr] and [FJ2].

5. Atomic decomposition. Given the atomic decomposition charac-
terization of H?, it seems natural that there should be an atomic decompo-
sition characterization of I,(H?). On a trivial level one only has to apply
I, to H? atoms, but we can do a little better than that. We again assume
a > n(1/p — 1). Now this condition has the effect of eliminating the need
for moment conditions on the atoms.

DEFINITION 5.1. An I,(p,q)-atom (for 2 < ¢ < o0) is a function b(z)
supported in a cube @ such that b € I,(L?) and |[b]| 1, (Le) < |Q]7/7.

THEOREM 5.2. Let a > n(1/p—1) and fizx ¢ > 2. If {b;} is any sequence
of I.(p, q)-atoms and {);} is any sequence of scalars such that 3 |A;|P < oo
then f = 3 A;b; is in Io(HP) with || f|| 1, (ae) < (T |A;IP)/P. Conversely,
if f € I,(HP) then there ezist such sequences such that f = Y A;b; and
(X117 < el fll o am)-

Proof. To show ) A;b; € I,(HP) it suffices to show that b € I,(HP)
for any I,(p,q)-atom with ||b||;,(z#») < ¢ independent of b. By a simple
dilation argument we may assume that b is supported in the unit cube. We
need to estimate || Dy ob||, for k > a. Now we know ([Str]) that || D ob||, =

|18]] 7o) 8O

/ le'ab(z)lpdz)llp Sc( J |Dk.ab(z)|°dz)l/q

lz|<2 jz|<2
< ellbll o (zey < e
Next suppose |z| > 2. Then b(z) = 0 so

k
Afb(z) = ) ckmb(z + rmy),
m=1
hence it suffices to estimate

f (j?(éf|b(a:+rmy)|dy)2ri1;a)p/2dz.

lzI>2 N0
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But b(z + rmy) = 0 unless r > |z|/2m so this integral is dominated by

00 2
dr \*
- 2 —plat
e [ ([ oM at) deselblt [ it de < ol
Iz122 " |z]|/2m fz|>2

since @ > n(1/p—1), and ||b]|; < ||bl|q < ¢||b]|1.(Ls) since b has support in the
unit cube (this last inequality follows from the characterization ||b||7 ;. ~

J(f1Akb(z)|2dy/|y|"+?**)9/2 dz for ¢ > 2 in [St] and the observation that
for z € Q and |y| > 2 we have Afb(z) = +b(z)).

For the converse we take f € I,(HP) so that f = I,(g) with g € H?, and
take the atomic decomposition of g, g = 3 Aja; where a; are (p, ¢)-atoms, so
f =3 Aila(aj) with (X |A:|P)Y/P = || f|| 1, (rr»). However, the I,(a;) are not
atoms since they do not have compact support. Clearly it suffices to obtain
an atomic decomposition for each I,(a;), and again by dilation invariance
it suffices to do that for b = I,(a) where a is a (p, ¢)-atom supported in the
unit cube. We then have (2.1) and (2.2) holding for b.

We choose a C* partition of unity 1 = o + Y oo, ¥m Where o = 1
and o1 = 0 on 2] < 2, suppypo C {|z| < 4}, suppyr C {2 < |z| < 8}
and @m(z) = 1(21"™z) for m > 2. We then write b = @b + Y oo_; omb
and we have to show ¢,,b = Ap,b,, for appropriate scalars A,, where b,,
are I,(p,gq)-atoms and Y °_ [Am|? < ¢. Obviously each b,, is supported
on a cube centered at the origin with |Q| = 2™*4*™) and so we must take
Am = 204+m)1/P=1/9)| |0, b|| 1 (L) in order that b,, be an atom. Thus we
need to estimate ||@mb||r, (Le)-

For m = 0 we use the fact that ||b]|; (L) = 1 and (2.2) to obtain
llob|| 1. (Ley < c. When m > 1 we use (2.1) instead. It is easiest to give the
argument first when o is an integer, for then

lembllraczay = Y- 11(8/02)P(omb)ll, -

IBll=c
But by (2.1) we can estimate
9 \"° 2\’
[(Z) (omd (Z) tomd
s0

lembll 1. (L) < c2™(=n/9=3=1) apd A, < 2™(—n=i-14n/p)

which gives

q
< conm
q

q
< c2nm2qm( -n—j-1)

oo

Z"\mlp <ec

because the exponent is negative.
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