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0. Given an algebra ¥, let p, (A) denote the number of n-ary non-
trivial polynomials depending on all n variables. From Theorem 1 in this
paper it follows that if p,(A) = 0 and if A contains a cyclic operation,
then p,,.,(A)>1 for all n>1.

This result can be applied in the investigation of possible repre-
sentable sequences <{a,, a,, ...>, that is, sequences for which there exists
an algebra U such that a, = p,(A) for n = 0,1, 2, ... Some applications
of this theorem are given in Section 2. Some results on representable
sequences can be found in [1] and [2].

1. In an algebra A, let f(z,, z,, ..., 2,,,,) be a (2n-+1)-ary cyclic
polynomial, that is, a polynomial satisfying the identity

f(@y, 24, ..., Doni1) = J(@ay Tgy oo oy Doy yyy Ty)

for some n > 1. Define three ternary operations f,, f:, fs by

fil@,y,2) = f@,9,9,...,9,2,2,...,2),

n times n times

fol®yy,2) = f(z,®,...,2,9,2),

2n—1 times

fs(m7yyz) :f(wf ey Ty Y, "°7yyzy°"7z)’

1 times m times m times

where | =n4-1,m =n/2 if n is even, and Il =n, m = (n+1)/2 if n is
odd. Define a sequence of unary operations by

fo(w) =,
fHH @) = f(f*@), f*@),...,f@) for k =0,1,2,...
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LEMMA 1. If the operation g(f*(x,),z,,...,u,) is essentially s-ary
(s = 1) for some algebraic operation g, then at least one of the operations

hi(2yy ...y @gys) =g(f;(fk_l(ml)7fk_l(m2)7fk_l(ma))7 Lgyeeey ms+2)7 t=1,2,3,
18 essentially (s 2)-ary.
Proof. Since f is cyclic, we have the equations
fi(z,y,») =fi(e,2,y), ¢=1,2,3,
and from these we get, for ¢ =1, 2, 3,

(1) hi(@y Yy @y Byy ooy Boyg) = hy(@y @y Yy By ooy Tyy).

Set #; = x, = @3. By using the assumption on the operation g, we
see that each operation k; depends on all of the variables x,, @5, ..., #,,,,
and on at least one of the variables x,, #,, ;. Hence each h; depends
on at least s of its s+ 2 wvariables. If h; is essentially (s-1)-ary, then we
must have
(2) hy(zy, %, °'-7xs+_-2) = Q;(%2y gy Byy .-y Byys)

for an essentially (s+1)-ary operation ¢;, because the only other possibilities
Qi(Byy Byy Byy ooy Boyg) A Q;(Byy Doy By ..oy Boyp) are eliminated by (1).
Similarly, if »; is essentially s-ary, then we must have

(3) hi(yy @ay ooy Teyy) = q; (@1, @4y s, -, Lgys)

for an essentially s-ary operation g;, because the possibilities g; (@, @4, ...,
By s) a0d G (Tsy Xy, - ..y Typp) are also eliminated by (1). Thus, if we assume
that Lemma 1 is false, then for each value of ¢ = 1,2,3 we get either
formula (2) or formula (3).

Since f is cyclic, we have

fi(@y, 25y @) =f?(w2, Xy, 1)
and from this we get
(4) hi(@1y gy Bgy Byy ovny Bgpg) = ho(®ay Tay Tyy Tyy oovy Tays)e
Similarly, we have either
J1(@2y @25 @5) = f3(@2, 3, )
if » is even, or else, when » is odd, we get
fi(@e, Tay 5) = f3(@3y T2, ).
These give us one of the equations

hy (g, @3, X3y Tyy ..y Lgpp), OT
(5) hy(®ay oy By Byy ooy Toyg) = A

hy(@gy Tay Loy Byy ovvy Bgyy).
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Now take ¢ = 1. If (3) holds, then from (4) we get

!
ho(Zyy oy Byy By vvy Torg) = G (Lyy Bay oo vy Tgp)

contradicting whichever one of (2) or (3) happens to be true for 7 = 2.
Similarly, if (2) holds for ¢ = 1, then from (5) we get

q1(@ay gy Tay ooey Bsig) = h3(Tyy Tpy Tpy Byy oovy Tyys)

with either ¢ =3 and b =2 or a = 2 and b = 3. But this contradicts
whichever one of (2) or (3) happens to be true for ¢+ = 3. This final con-
tradiction proves Lemma 1.

THEOREM 1. In an algebra U, if there exists a cyclic m-ary operation
f(@y, Tay oony By), M =2, such that f*(x) is not constant for amy k, then
in W there exists an essentially (2j41)-ary operation for each j =1,2,...

Proof. Note that f(x,,...,x,) is essentially m-ary, because it is
cyclic and f(z) = f(«, #,...,x) is not constant.

If m =2n is even, then we put 2, =2, =... =, =2 and =,
=... =2, =y to obtain the symmetric binary operation f(z,z,...,
%yY,Y,y...,y). By a theorem of Marczewski [3], the algebra has then
an essentially j-ary operation for any j > 2.

If m = 2n+1 is odd, fix j. The existence of the claimed (2j41)-ary
operation will be shown by j applications of Lemma 1. First take s = 1,
g(z,) = #,, k = j. Then the assumptions of Lemma 1 are satisfied, and
so, for a value of i, the operationf; (f/~' (@), f/=* (x,), f/~" (23)) is essentially
ternary. If j > 1, we use Lemma 1 again, with s = 3, g(x,, ®,, ©5) = f,,l(ml,
fi=Ya,), f1~ 1(.'Jo,,)), = j—1, to get an 4,¢e{1, 2, 3} such that the operation

fil(fiz (f]»-—z(mﬂ’ fj_z(a;z)y fj—z(ws))a 17 (@), fj_l(ws))

is essentially 5-ary. If j > 2, we continue as indicated: k¥ = j—2, etc.
After j steps we get an essentially (2j-+1)-ary operation, namely

Ja, (fzz ( .. (fz7 (21y @2y )y [1(24), F* (ws))’ T2 (), - ..
. 1fj_2(9721—1)); I (@), fj—l(w21+1))-

2. In this section we will give some applications of Theorem 1.

THEOREM 2. If po(A) =0 and p,;,(A) =0 for some j=>1, then
m divides p,, (W) for any prime number m.

Proof. If p,, is not divisible by m for some m, then there exists an
essentially m-ary polynomial f(z,,...,®,) such that the number » of
distinct operations obtainable from f by permuting its variables is not
divisible by m. Let S be the group of symmetries of the polynomial f,
that is, the group of all possible perinutations of the variables x,, @,, ..., Zp
which do not change the value of f. Then, if S has order s, m! = 8-n.
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Since m is prime, s is divisible by m. By Cauchy’s theorem, the group
S contains an element of order m. Since m is prime, this element must
be a cycle of length m. Thus a certain permutation of f is a cyclic poly-
nomial. Then, by Theorem 1, p,;,,(%)>1 for all j > 1, which is a contra-
diction.

By combining this Theorem 2 with Case 4 of Theorem 1 of [1], we get

COROLLARY. If a sequence {a,, &,,...> satisfies ay, = 0, a, >0, and
a,, = 0 for all composite m, then the sequence is representable if and only
if, m divides a, for all m.

Another application of Theorem 1 uses the following Lemma due
to G. Gritzer:

LEMMA 2. If 1< 9, (A) <m for some m, then W contains a cyclic
n-ary polynomial for some n > 1.

Proof. By assumption, we have at least one essentially m-ary poly-
nomial f(x,,...,,). Cyclic permutations of its variables will give m
operations, which cannot all be different, since p,, < m. So we must have
an identity of the form

F(@yy @ay ooy X)) = [(@pi1s Tipas ooy By Bay Tay ovvy Ty)

for some value of k¥, 1 <k <m. If k¥ and m are relatively prime, then
f is cyclic. Otherwise, let d be the greatest common divisor of ¥k and m.
Then from the last equation we can derive the identity

J @1y oooy @) = f(@a115 Tapgy ooy Ty L1y oy ovvy Xg)-

Put ¢, =2, =... =23 =¥, Tg,, = ... = Ty = Y2, otc. This gives
us a cyclic n-ary operation, with n = m/d.

By combining Lemma 2 and Theorem 1, we get

COROLLARY. If po(A) = 0 and p,,,,(N) = O for some n > 1, then, for
any m, either p,, = 0 or p, = m.

REFERENOES

[1]1 G. Grédtzer, J. Plonka and A. Sekanina, On the number of polynomials of
a universal algebra, I, Colloquium Mathematicum 22 (1970), p. 9-11.

[2] G. Grédtzer and J. Plonka, On the number of polynomials of a universal algebra,
I1, ibidem 22 (1970), p. 13-19.

[3] E. Marczewski, Remarks on symmetrical and quasi-symmelrical operations,
Bulletin de I’Académie Polonaise des Sciences, Série des sciences mathématiques,
astronomiques et physiques 12 (1964), p. 735-737.

UNIVERSITY OF MANITOBA

Regu par la Rédaction le 8. 10. 1969



