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1. Introduction. Let p be a fixed real number, 1 < p < 00, 7 a
nonnegative integer and 2 C R™ a bounded domain. We denote by W™ the
space of distributions f € LP(2) with derivatives of order not greater than r
in L% and norm |Lf; W'|| = (%, 1D IR Gie. W™ = W72(9) in [A],
=V, in [M], = W in [TR]).

We denote by W{ the closure in W™ of C§° = C§°(2). If we want to
make explicit the index p we write W?" and WJ'" instead of W™ and W]
respectively, and to underline the fact that p = 2, we replace sometimes W
by H. We denote by C*®(Q) the family of functions f in C*°(Q) such that
D* f is uniformly continuous in 2 for all e, and define

D.(Q):={f € C®(Q): D*f =0on N for |a| < r}.
Assume that r and R are positive integers. For 7 < R we define W, g(9),
Wyr:=WiNnWE with norm ||-; WF.

D,(R2) coincides for a large class of regions with C*°(Q) N W, () (cf. end
of §2). In [B] we give a constructive proof of the following result.

THEOREM 1. If Q has a C* boundary then D, is dense in W, g.

In §2 of this paper we exhibit another way of defining the spaces W, g
and in §3 we show that in Th. 1 the requirement 9Q € C* cannot be
replaced by 9Q € CR.

2. A characterization. Let ? be as in Th. 1 and 1 < p < o0.
Prof. A. P. Calder6n pointed out to us that W, g is the (closed) subspace
of WR that consists of the distributions f € WF such that D*f = 0 a.e.
on 0N for |a| < r. This result can be proved using [C], especially Th. 11.
Next we discuss certain details that make more clear this statement and we
prove it for a strong Lipschitz domain and 1 < p < oo.

In what follows G will denote a (bounded) strong Lipschitz domain (i.e. a
domain with the strong local Lipschitz property ([A]) = domain of class C°'
([M]) = domain with a minimally smooth boundary ([ST})). These domains
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are Lipschitz domains in the sense given in [M] (also called regions of type
K in [MY]). However, both classes do not coincide as can be shown by an
example due to Maz’ja ([M], p. 19).

To define a strong Lipschitz domain we follow [G]. Each z° € dG has a
neighborhood U such that in some orthogonal coordinate system: z° = 0,
U={z: |z;|] < d;},UnG={z: |zj|] < di, i =1,...,n-1,9(2") <
Tp <dp},UNOG ={z: |z5] < d;i, i=1,...,n— 1,2, = yp(z')}, where
z' = (z1,...,Zn—1) and v is a function such that |y(z') - v(y')| £ K|z'-v'|,
K a constant. If d,,...,d,_; are sufficiently small then |y(z')| < d,/2 and
the map
(1) X; = z;/d;, Xn = 2zn - 7(2))/dn
satisfies a uniform Lipschitz condition as well as its inverse. These functions
map the neighborhood of z°, Ry = {|z;| < di, i < n; 7(2') — dn/2 < 2, <
v(z') + d,/2}, onto the cube R = {|X;| < 1,i =1,...,n} and in such a way
that the images of G N Ry and 3G N Ry are respectively Q@ = {|X;| < 1,i <
n;0< X, <1}, §={|Xi| <1,i< n; X, =0}.

Therefore, there exists a finite open covering of 4G, {R;},j=1,..., N,
and bilipschitzian transformations ®; of the domains R; onto R such that
R;NG and R; N 9G are transformed by ®; onto @ and S respectively.

By definition, a set A C G has surface measure zero if for each j,
®;(A N R;) has measure zero in the (n — 1)-dimensional surface S.

To give a sense to the restriction of u € W?(G) to G, that is, to
the trace of u, it is sufficient to define the restriction to S of a function
in W1?(Q), since one can use for the general case a partition of unity and
the transformations ;. Now, if f € W1P(Q) then 8f/0z, € LP(Q) and
because of Th. V, p. 57 of [S], there exists in its equivalence class a function
absolutely continuous on each segment {(z’,t): 0 <t <1} C Q. Let us
call it a prototype. For a prototype & f(z',t) = 58;[:(::’,0 € L'(0,1) for
a.e. ' € S. In consequence, for a.e. z' € S the limit lim,—¢ f(z',t) =:
tr f(z') =: f(z',0) exists. The definition of tr f, almost everywhere on S,
is independent of the prototype chosen. (In regard to this point see also
Th. 7.3 of [MY].)

In [G], footnote 7), the following result is proved.

LEMMA 1. If1<p < oo and f € W1P(Q) then tr f € LP(S) and

(2) lltr £5 LP(S)]| < Coll £; WHP(Q)I-

Another way of defining the trace is as follows. If u € C>(Q),
Tr u(z’,0) := u(z’,0) = tr u; if u € W1P(Q) and {um} C C*(Q) is such
that ||up, — u; WPP(Q)|| — 0 as m — oo, define Tr u := limpy— oo TT Upp.
From inequality (2) it follows that this limit exists in LP(S) and is equal to
tr u.
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THEOREM 2. Let f € WR(G),1<p< 00,1 <r<R. Then f € W, g
if and only if tr D*f = 0 for || < r.

To prove this characterization we shall use the following two lemmas.
LEMMA 2. Let f € W1(Q), (supp f)~ C R. Then

(i) f € W3(Q),
(ii) tr f=0,
(iii) f~ € W1(R™)
are equivalent statements. Here f~ is the extension by 0 of f.

Proof. From what we said above it follows that (i) implies (ii). Assume
tr f = 0. There is a prototype F(z',t) of f in @ such that its extension
by 0 to R™ is continuous in —0c0 < t < oo for each z' € R*~1. Therefore
%(z’,t) € LP(R™). By the same Th. V of [S], weget 8f~/0z, = 0F/0z, =
(0f/0z,) " a.e. Analogously D®f~ = (D f) for |a| = 1,and f~ € W!(R").

Finally, if (iii) holds then for 0 < ¢ sufficiently small f™(2',z, — €)|q €
We(Q). Letting £ tend to 0 we get lim f(z/,z, —¢€) = f in W(Q), and (i)
follows. =

LEMMA 3. Assume that r > 1. If D*f € W}(G) for all a such that
la| < r then f € W§(G), and conversely.

Proof. Since f € WJ(G), f~ € WI(R") and also DPf~ = (DPf)~
for || = 1. Likewise, for |a| < r and |8| = 1, D*f € W}(G) implies
(D*f)~ € WYR") and DP(D*f)~ = (D*+Pf)~. We obtain by induction
for |a] < v, D*f~ = (D*f)", and therefore f~ € WT(R™). Given ¢ > 0,
since G is a strong Lipschitz domain, we find by localization a distribution
g € WT(R™) such that supp g€ G and || f — g; W"(G)|| < €. In consequence,
f € W§(G). =

Proof of Theorem 2. It is sufficient to prove the theorem for a
function f such that the closure of supp f is contained in some of the open
sets R;j. Applying Lemma 3 we find that f € WJ(R; N G) if and only if
D> f € W§(R; N G), |a| < r, which is equivalent to (D*f)o ;' € W}(Q),
|a] < . This holds, because of Lemma 2, if and only if tr (D*f o <I>j'l) =0
for |a| < r; that is, if and only if tr D*f =0 for |a| < 7. =

COROLLARY 1. Letu € C™"Y(G)NWFR(G),1<p<0,1<r<R,Ga
strong Lipschitz domain. Then u € W{ if and only if D*u = 0 on 3G for
la] < r.

The useful particular case r = R = 1 appears, for example, in [T)],

Prop. 22.2, and for Lipschitz domains in [MY], Th. 7.1. It follows at once
from Corollary 1 that

(3) W, (G)N C*(G) = D:(G).
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This equality cannot hold without restrictions on G. In fact, let B be the
unit open ball in R? and A = B\ {0}. Assume that g € C*(B), ¢(0) # 0,
g = 0 on 9A = OB, and that ¢ is a positive sufficiently small number.
Define the function g.(z) as 0 on |z| < £, = g(z)log(|z|/€) [log(é/¢e) if
£<|z| <8 =+, =gon|z| >4 Then g. € H}(A). Besides

llge — g; H3(A)|| = 0 ase — 0.

That is, g € C°(A) N H}(A) \ D1(A).
Observe that from the hypothesis on G we have
(4) C*(G) = {flg : f e C*(R")}
because in such regions Whitney’s extension theorem can be applied

(cf. [W]). (4) is not true for general domains, for example, in G = B\ S
where S is a sharp Lebesgue spine in R? with vertex at 0.

3. Domains with annihilating boundary. We say that a strong
Lipschitz domain G has an annthilating boundary (or is an ab-domain) if
for any function f € C=(G), f = 0 on 8G implies D*f = 0 on 9G for all a.
We say that G has an annihilating boundary at y € 0G if there exists an open
neighborhood U of y such that for any function f € C>(G) with supp fCU,
f=0 on G implies D*f =0 on 9G for all a. Briefly, G is an ab-domain iff
it has an annihilating boundary at each point of 3G. Such domains have in
fact nowhere smooth boundary as is shown by the next lemma.

LEMMA 4. G is an ab-domain iff 0G is nowhere a C*-surface.

Proof. If for some open set U, GNU = {z € U : z, > ¢(z')}
¢ € C®(R™1), then the function f(z) = (z, — ¢(z'))g(z), g € CS(V),
satisfies f = 0, df/0x, = g on 0G, and therefore G is’not an ab-domain.
Let § € C=(G). By (4) it is the restriction to G of a function F € C*®(R").
If F = 0 on 0G and dGNU is nowhere smooth then by the implicit function
theorem we must have VF = 0 on JG. It follows by induction that G is an
ab-domain. =

LEMMA 5. Suppose that the strong Lipschitz domain G has an annihilat-
ing boundary on 0GNU where U is an open neighborhood of a pointy € 9G.
Let ¢ € Cg°(U). Then

(i) u € D1(G) implies ¢u € D,(G) for all r,
(ii) if D,(G) is dense in W, p(G) then u€ W, gr(G) implies pu € WS (G).

Proof. (i) From the hypothesis, as in Lemma 4, we obtain V"(¢u) =0
on 0G.

(i) If {un} C D,(G) is such that ||u, — u; WR(G)|| = 0 as n — oo then
lé(un — v); WR(G)|| = 0. Since, by (i), ¢u, € Dg(G), by Corollary 1 we
have ¢u, € Wf(G). »
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We can now prove the main result of this section.

THEOREM 3. Assume that 1 < r < R. If G is a strong Lipschitz domain
with a CR-boundary which is an ab-domain at a point y € 8G then D.(G)
is not dense in W, g(G). '

Proof. Let U be the neighborhood of y where 3G is annihilating. There
exist u € W, p(G) and n € C§°(U) such that nu € W(G). In fact, we can
choose U small enough to have GNU = {z € U : z, > #(z')}, ¢ € CR.
Let 7 € C§°(U) such that n(y) = 1. We define u(z) = (2, — ¢(z'))"n(z).
Then u € CF(G) N WJ(G) and (87u/dz%)(y) = r!. Because of Corollary 1,
u g.Wit(G) D W§(G). Theorem 3 follows now from Lemma 5 (ii). »

It is easy to construct C*+1-domains, k a nonnegative integer, that are
ab-domains: for example, let w(z) be the van der Waerden function and

define G C R? by G = {(z,y): y > [; (z — t)*w(¢t) dt}.
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