COLLOQUIUM MATHEMATICUM

VOL. LVIII 1990 FASC. 2

HARDY-LORENTZ SPACES AND EXPANSIONS
IN EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI
OPERATOR ON COMPACT MANIFOLDS

BY

LEONARDO COLZANI anpo GIANCARLO TRAVAGLINI (MILAN)

Hardy spaces on manifolds have been studied either by considering
manifolds as homogeneous spaces in the sense of Coifman—Weiss [C-W] or by
appealing to the theory of local Hardy spaces ([Str], [Pee], [Gol]). In the first
part of this paper we state several different definitions of Hardy spaces on
a compact riemannian manifold M and, besides the spaces H?(M), we study the
more general Hardy—Lorentz spaces H”?(M) defined through Lorentz norms.
Some of the properties of these Hardy-Lorentz spaces have been previously
obtained, e.g., in [F-R-S], [Alx], [Col], [Fe-So]. In particular, we state an
atomic decomposition for these spaces and some duality results (which have
been obtained in cooperation with Bjorn Jawerth of Washington University in
St. Louis). Some -of these results and proofs are perhaps new even in the
euclidean case. In the second part of the paper we extend some classical
inequalities of Paley, Hardy, and Littlewood to expansions in eigenfunctions of
the Laplace—Beltrami operator of M. The case where M is a compact Lie group
or a symmetric space is also considered.

1. Preliminaries. Let M be a connected compact C®-manifold of dimen-
sion N endowed with smooth riemannian metric d and riemannian measure dx.
As usual, |4| denotes the measure of a measurable subset 4 of M. IP(M),
0 < p < oo, is the Lebesgue space on M, while [74(M),0 < p < 00,0 < g < o0,
is the Lorentz space defined by the (quasi) norm

B q @ Y dt\11
1S heee = (2 LEV2S* 01 )
: Po t
where f* is the nonincreasing rearrangement of f (see [B-L]).

C¥(M), k >0, is the space of k-times differentiable functions on M. Let
{U;} be a finite open covering of M, and {y;} be diffeomorphisms of the U’s
onto the unit ball in R". Finally, let {¢;} be a partition of unity on
M associated with the covering {U}}, and assume that the support of each ¢, is
a compact subset of U, We can norm C*(M) by

1£lex = £ 1@,0)0% lowam,
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& (M) is the Schwartz space of indefinitely differentiable functions on M,
and &'(M) is its dual, the space of distributions. {f, ¢) denotes the pairing
between a distribution f and a smooth function ¢.

We denote by 4 the Laplace-Beltrami operator of M. The solution of the
boundary value problem on R, x M

Au(t, x) = (0/ot)u(t, x), u(0, x) = f(x)

is given by the “convolution” with the heat kernel W(t, x, y) defined on
R, xMxM,

u(t, x) = {f, W, x, *)>.

Let us denote by 0 =+ —4y, > —A4; = —4, > ... the eigenvalues of 4, and
by {¢;} the associated orthonormal complete system of eigenvectors. Then

W(t, x, y) = ). exp(—4;t) ¢;(x) d;(9).
j=0
It is also possible to give an asymptotic expansion of the heat kernel. In
particular,
W, x, y) =t~ "2 exp(—d*(x, y)/4t) G(¢, x, y),

where the function G satisfies ||G(t, x, *)llcx < ¢, for every k >0, with ¢,
independent of teR, and xe M (see [B-G-M] or [Cha]).

2, Hardy spaces. Let f be a distribution on M and let
u(t, x) = {f, W(t, x, °)).
(i) The radial maximal function W~ f is the function
W f(x) = sup {Ju(t, x)|: t > 0}.
(ii) The nontangential maximal function W,* f, « > 0, is the function
Wt f(x) = su.p {lu(t, z)]: t >0, zeM, d(z, x) < a\/z}. .
(iii) The tangential maximal function W5 *(f), B > 0, is the func.tion'

() = sup{lu(t 2) (1+d(f/’tx)) >0, zeM}.

Lets be a nonnegative integer and let x be a point of M. K (x) is the set of
all ¢ in £ (M) for which

(a) ¢ is supported by a ball B centered at x;

(b) "¢"C"< |Bl—l—k/N, k=0, la cees S

(iv) The grand maximal function f¥ is the function

J2(x) = sup{|<f, ¢I: peK,(x)}.
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2.1. PROPOSITION. Let 0<p< o0, 0<gq< o0, a>0, B> N/p, and
s > N/p. Then the LP9-norms of the maximal functions (i}{iv) are equivalent.

The proof of this proposition is by now quite standard, and it is similar to
the corresponding proofs in [Fe-St] and [Fo-St] for the case of L?-norms on
euclidean spaces and homogeneous groups. One just needs the expression of
the heat kernel given in the preceding section. Working on a compact manifold
and dealing with Lorentz norms create no serious extra difficulties.

DEFINITION. The Hardy space H”%(M),0 < p < 00, 0 < g < 0, is the set of
all distributions f on M with grand maximal function f{§,,+ in the Lorentz
space L”%(M). The HP%-norm of f is

||f||HM = ||fﬁvlp]+1'||Ln-c-

If ¢ =p, we just have the classical Hardy space HP(M). This is the
definition of Hardy space on a manifold given by Peetre in [Pee], however the
previous proposition shows that any of the maximal functions (i}{iv) can be
used equally well to define H”9(M).

The structure of manifold relates naturally the above definition of Hardy
space with the notion of local Hardy space on R". Let us define the local Hardy
space hP4(R") as in [Gol]. Then one easily sees that the following proposition
holds:

2.2. PrOPOSITION. Let {U;, ¥;} be coordinate charts and let {¢p;} be
a partition of unity as in Section 1. Then a distribution f is in the Hardy space
HP4(M) if and only if, for every j, (fo,)oy; is in the local Hardy space h**(R").

As a consequence of this proposition one can lift results from h?9(RV) to
HP9(M). For example:

2.3. PROPOSITION. Let 0 <p<r< o, 0 <q < o0, and let
a= N(/p—1/r).

Then if Tis a pseudodifferential operator on M in the symbol class S5, T maps
HP9(M) into H"%(M) continuously.

If p=q =r, and hence a = 0, then this proposition is contained in [Str],
[Pee], [Gol]. In our case observe that a pseudodifferential operator in the
symbol class S;§ can be factorized into a Bessel potential (or fractional
integral operator) of index a, which maps h”(R¥) into h"(R"), and a pseudodif-
ferential operator in the symbol class S, which preserves h"(RM). The
corresponding result for Hardy-Lorentz spaces can be easily achieved through
interpolation.

3. Atomic decomposition. In this section we want to introduce an atomic
decomposition for H?*9(M), analogous to the classical atomic decomposition of
HP(RM). Atoms on RY are bounded functions with compact support which
satisfy certain moment conditions. Therefore we have to introduce a class of
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functions on M that play the role of the polynomials. A natural choice, but not
the only one, is the following: '

Let z be a point of M, let T, (= R") be the tangent space at z, and let Exp,
be the exponential map at z. Then there exists an r, > 0 such that, for every
z in M, Exp, is injective from the ball B(0, r,) in T into the ball B(z, r,) in M.
The largest r,, with this property is called the injectivity radius of M, and in the
sequel any ball in M will be assumed to have radius smaller than this injectivity
radius.

Given a ball B(z, r) in M, we define the polynomials on B(z, r) as the
images of the polynomials on the tangent space T, via the exponential map, i.e.,

P(Exp, X) = ¥ ¢, X.
i

Let 0 < p < 1. A regular (p, 0, s)-atom is a function a in L™ (M) satisfying:
(a) the support of a is contained in a ball B; '
(b) lall.« <|B|~*7;

(©) | a(x) P(x)dx = O for every polynomial P on B of degree at most s.
M
An exceptional atom is any function a in L®(M) satisfying
lall - < 1.

3.1. PROPOSITION. Let f be a distribution in H'(M),0 <p<1,0< g < o0,
and

Q= {XéM3 a1 > (fhm+1)* 2@} for keZ

(so that |Q,| = 2*). Then, if s is a nonnegative integer, there exists a sequence of
bounded functions {f,} with the following properties:

() SUppfy < Q;
(ii) S = c(fln+1)* @) XIBiA"” ay(x),

where the a,;’s are (p, o, s)-atoms with supports in the balls By;, and these balls
are a~Tovering of Q, with uniformly bounded overlaps;

(iii) f=lm Y f
n—=+ o lk|<n
in the topology of HP°(M)+ HP'(M) if
O<po<p<py <o and s=[N(l/p,—1)].

The proof of this proposition relies on the Calder6n-Zygmund decom-
position of the distribution f and does not differ essentially from the classical
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proof of the atomic decomposition of H?(R"). (Again see [Fo-St] as a com-
prehensive reference or [Fe-So] for a proof of the atomic decomposition of
Hl’w(RN).)

Before we state the converse of this proposition observe that for the
sequence {f,} we have

I fillae < ¢ 2YP (fm+)* (22X 1), i=0,1,

and, by the definition of the HP?-norm, the sequence

{2"P(flm+1)* M)

is in the sequence space /.

3.2. PROPOSITION. Let 0 < p, <p<p, < ©, 0< g < oo, and let {f,} be
a sequence of distributions with

I fellar: < 2¥Piqy,  i=0, 1.

Then, if the sequence {2*?a,} is in 1% then ) f, converges to a distribution in
k
HP4(M), and

I Sl < (1247 ay|9) /e,
k k
To understand this theorem we use the functional J of the real method of
interpolation (see [B-L]). Set
a=2Vp~1lr  and (1-6)/py+0/p, = 1/p.
One easily sees that

J(@*, £) = max{| filao, @*l filaes} < a™- 20,

Thus {a~*J(a*, f)} is in 1 and ¥/, is in the interpolation space (H”(M),
k

HP*(M)),,. Consider now the grand maximal function operator f—f&po1+1-
This operator maps 'H?/(M) into L?(M), therefore it maps (HP°(M), H?*(M)),,,
into

(LP°(M), L**(M))p,, = L"(M),
and the proposition follows.

Finally, observe that from the above propositions we easily obtain another
proof of the following interpolation result of Fefferman et al. [F-R-S].

3.3. PROPOSITION. Let 0 < p, <p <p, < ©, 0<q,, q,, 9 < 00, and let
(1—-06)/po+6/p, = 1/p.
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Then
( HPo-90 ( M), HP+ a1 ( M))O.q — Hp.q( M)

Remark. When M is a compact Lie group, it may be more natural to
consider atoms with moments with respect to the trigonometric polynomials of
the group, so that these moments are preserved under convolution operators.
For these atoms it is possible to prove an analogue of Proposition 3.1. Some
parts of the proof differ from the classical arguments, however we prefer to
omit the proof for the sake of brevity.

4. Dudlity. Let ¢ be an integrable function on M and let s be a non-
negative integer. Then for every ball B in M there exists a unique polynomial
¢5 on B of degree at most s, such that .

7

{ (@(x)—¢p(x) P(x)dx =0

for every polynomial P on B of degree at most s.
If Q is an open set in M, and if

9=g%

where {B,} is a covering of 2 with balls with uniformly bounded overlaps, we
define the “oscillation” of ¢ on Q as

0,(2, ¢) = sup {Y { |p(x)—p,(x)dx: |JB;=Q},

j By J

where the supremum is taken with respect to all coverings with uniformly
bounded overlaps. We also define the “modulus of continuity” as

o(t, #) = t~*sup{0,@, ¢): |2 <1}.

DEFINITION. The Campanato space X*%(M), a = 0, 0 < g < 0, is the set of
all integrable functions ¢ on M with the sequence {2 *wy,(2*, ¢)} in . The
X*%-norm of ¢ is

Pl xee = Q127  wopng (2%, )19
k

It is easy to see that

sup{|B|™'~* [ |$(x)—pp(x)ldx: B}
B

is an equivalent norm in X*®(M). In particular, X% *(M) coincides with the
space of functions of bounded mean oscillation BMO(M), and, when a > 0,
X**(M) coincide with the spaces introduced by Campanato in [Cam]. In
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general, it is possible to prove that for a > 0 the spaces X*4(M) coincide with
the Besov-Lipschitz spaces BX*4(M) (see [B-L] and [Tri] for a definition of
Besov spaces, and [C-J] for the relation with these Campanato spaces).

~ In the next proposition, with a slight abuse of notation, by H”®(M) we
shall mean the closure of the set of smooth functions in the H?*®-norm.

4.1. PROPOSITION. Let 0 <p<1, a=N(l/p—1), 0<g< o0, and let
d=+0if0<qg<1and qd =q/(q—1)if 1 < q < 0. Then the dual space of
the Hardy space H?”9(M) can be naturally identified with the Campanato space
X*7(M).

This proposition follows from the atomic decomposition of the spaces
H?%(M) through the techniques developed in [C-W] and [Fe-So]. Details are
in [C-J].

5. Hardy type inequalities for eigenfunction expansions. For the Fourier
transform of a distribution f on the N-dimensional torus one has the classical
inequality :

M2 GNP < el flgr 0<p<2),
j

which, in the one-dimensional case, is due to Paley when 1 < p <2, and to
Hardy and Littlewood when 0 < p < 1. The purpose of this section is a faithful
extension of this inequality to expansions in eigenvectors of the Laplace-
Beltrami operator of M.

We start by proving an imbedding of Hardy spaces into Besov spaces,
which may be of interest by itself.

DEFINITION. The Besov space B54(M), —o0 < & < 4+ 00, 0 < g < o0, is the
set of all distributions f on M with

Il e =122 X KA 6P < + 0.
2 k 2k A < 2K+
Define the “fractional integral” operator I?, B > 0, by

Ipf= %:lj_ﬂlz S ¢J> ¢j'
It is known that this operator is a pseudodifferential operator in the symbol
class S8 (see [See] or [Tay]). Then, if

O<p<r<ow, 0O<g<ow, and p=N{1/p-1/r),

Proposition 2.3 implies that

If: HP9(M)-— H™(M).
In particular, for r = g = 2, we get the inclusion

H”'Z(M) c Bg’(llz— llp).Z(M)'

This result and an easy interpolation argument imply
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5.1. PROPOSITION. Let 0 <p<2, 0<g< o0, and let a = N(1/2—1/p).
Then the Hardy space HP9(M) is imbedded into the Besov space B5%(M).

The above proposition is the key for a quick proof of a generalized Hardy
inequality.

5.2. PROPOSITION. Let 0 < p < 2,0 < g <2, and let {m;} be a sequence of
nonnegative numbers such that

( X m22=D)2-0/2 ¢ . PkN(/2=1/pNa,
2k Jay<2k+1

Then
EmIS, oI < el f v
j

To prove the proposition observe that

Z mija ¢j>lq

2k g\/l_"< 2k+1
< QkN(1/p= 1/2)4( z mj2/(2 -q))(z —9)/2.QkN(1/2- llp)q( Z K f, ¢j>|2)q/2 .
zks‘/2;<2k+l 2t<‘/l—]<zk+n

Summation with respect to k completes the proof.
5.3. CoroLLARY (Hardy inequality). Let 0 < p < 2. Then

EAD2KS, o)1) < clf law-
i

To prove the corollary it is enough to show that the sequence {1)®~2/2}
satisfies the assumption of Proposition 5.2 (for g = p). This follows from the
Weyl formula (see [Cha])

card{A;: 4; < i} = wy2r) ¥IM|A¥? (4> + o0).

The above result shows a strong analogy with the euclidean case. This is
somewhat surprising since our “Fourier transform” {{f, ¢,>} behaves quite
differently from its euclidean counterpart. As an example, if 2 < q < o0, then
the sequence {||¢;|l.s} may be unbounded, so that if fis in L?(M), 1 < p <2,
then the sequence {{f, ¢,>} may also be unbounded (see, e.g., [G-TJ). In this
context we also note that a strict analogue of the Paley lacunary inequality for
functions on the torus, '

Cife) 2 <clflee (1<p<2),
i

does not work for our general eigenfunction expansions. To make the
inequality work in this context one should introduce a suitable weight.
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Remark. The case where M is a compact Lie group or a symmetric space
is of particular interest, and it has been previously considered by several
authors (see, e.g., [C-W], [Gia], [C-G)).

Let (G, K) be a compact symmetric pair and let {z} be the set of
irreducible unitary representations of G of class one with respect to K. This set
is naturally identified with a cone in ZR, where R is the rank of G/K, and we
shall denote by || the norm of =. With any distribution f on G/K we associate

its Fourier series )_f,, where f, denotes the projection of f into the subspace of

L*(G/K) associated with .

5.4. PROPOSITION. Let G/K be a compact symmetric space of dimension
N and rank R, and let 0 < p < 2. Then, if

f=xr
is in H?(G/K), we have

X m| ¥+ RHE=2I2 ) £1182)17 < |l f | as-
n

The case p = 1 of this proposition has been proved by using the atomic
decomposition of H!(G/K) by Giacalone [Gia] and Cazzaniga and Giacalone
[C-G], but the case of the euclidean sphere was already contained in [C-W].
Our approach to this problem is different, and again relies on Proposition 5.1.

Observe that there are approximately 2*R representations in
{r: 2* < |n| < 2**1},

so that, by the Holder inequality,

e T R (D M F AT 3

2k x| <2k +1 2k|x|<2k+1

Adding over k and using Proposition 5.1 we obtain the desired result.

In order to prove that the index [(N + R)/2] (p—2) in the above proposi-
tion is the best possible consider the derivatives of the heat kernel

d
E W(t’ X, y)'

Using the estimates in Section 1 one has, if
N
n >7(1/p—1) and -0,
then

d’l
Et; W(t’ X, y)

~ ((N/2X1/p=1)=n_
HP )
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d!l
| (ﬁ W(t’ X, y)),,

where — 1, and d, denote the eigenvalue and the dimension of the represen-
tation =, respectively. The formula for the eigenvalues and the Weyl dimension
formula ([Wal]) imply that A, = [n|>+O(lxn]), and d, ~ |n|¥ "R, at least for
“most” m’s. We can then conclude that if

Also,

= Anexp(— A, ) /d,,

L2

n>%(1/p—-1) and -0,

p ) 1/p
>
L2
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