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ON DYE’S CONDITION IN NILPOTENT GROUPS OF CLASS 2

BY

ERNEST PLONKA (WROCLAW)

In [1] and [2] Dye developed a theory of approximation of auto-
morphisms of a probability measure space (M, u) by finite groups of
automorphisms. Among other things he proved that any Abelian group of
automorphisms of (M, 4) admits such an approximation. He showed
also that if a group G satisfies the condition

) I S2n_ S2n—1|
) e
for some finite subset § of G such that 1«8, §°' =8 and U 8" =@,
then G admits approximation by finite groups.

The aim of this paper * is to verify that nilpotent groups of elass 2 on
two generators satisfy (D), and thus to obtain some more information
about the action of these groups as automorphisms of a probability
measure space.

0

1. Notation. Let G be the free nilpotent group of class 2 on two gen-
erators. It can be viewed as the group of words z*y[y, #1°, where a, b, ¢
are integers and multiplication is defined by the formula

PPy, o0 P [y, 2 = oy [y, g,
Let us denote by F the set {1, z, 2™, y, y~'} and let, for a set A = G,
A" = {a,8,...a,: a;ed, i =1,2,...,n}.
Clearly, F* =« F"*!) and | J F" = G. For a triple k,1, n of integers
such that |k|+ |l]| < n, we write
Culkyl) = {c: y'[y, 21’ F"},
M,(k,l) = max C,(k,l) and m,(k,l) = min C,(k,1).

* The author would like to express his deep gratitude to Professor Elmar Thoma
for his hospitality during the stay of the author at Technical University in Munich
and to the financial support of D.A.A.D. during the autumn of 1971, when this work
was done.
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The following identities, valid for every nilpotent group of class 2
and an arbitrary integer n, will be used throughout:

[u" v] = [u, v"] = [w,v]* and (o) = u"o"[v, w]"®"V2

2. Lemmas.
LEMMA 1. For all k, 1, n, we have

Colky 1) = {8 N: my(k, 1) < 8 < M, (k, 1)}

-

Proof. If 0 < ce O, (k, 1), then in F™ there is an element of the form
ayxb or ay~'x~'b, where ae F*, be F' and s+t<<n—2. Thus either axyb
or ax~'y~'b belongs to F". Hence c¢—1eC,(k,1). Similarly, if ¢< 0,
then ¢+1€¢C, (k, ). Since 0¢ C,(k, 1), the proof of the lemma is complete.

LeEMMA 2. A. There exist integers a,, a,, by, b, such that a,+a, = k,
b,+b, =1 and either M, (k,1) = a,b, or M,(k,1) = a,b;+ a,b,+ a,b,.

B. There exist integers a,, as, by, b, such that a,+a, =%k, b, +b, =1
and either m,(k,1l) = a,b, or m,(k,1) = a,b,+a,b,+ ayb,.

Proof. Let

w = a1y™.. . aty* = oy’ [y, T,

where

a = a(w) =Zc,-, b = b(w) =Zdi’ e = e(w) =Zcid,-.

i<i

A. Let w = z”1yh1a2y% 2. We are going to show that there is a word
w’ of length not greater than 4 and such that a(w’) = a(w), b(w') = b(w)
and |e(w)| < |c(w’)]. Assume that ¢; £ 0 for ¢ =1, 2,3, and d; # 0 for
2 = 1, 2. Consider two cases for e(w) = c,d,+c3d,+c3dy.

1. e(w) > 0.

If ¢,d, < 0, then we put w’ = 1+ 2y%1+% 2%, Thus e(w’) = e(w) — ¢, d;.

If ¢,d, > 0 and c¢;d, < 0, then we put w’ = z1y*12%2*%y%, Thus
e(w') = e(w) —cyd,.

If c,dy >0, ¢c3d; >0 and c¢;d, >0, then sgnec, = sgne; = sgnd,
— sgnd,, and we put w’ = af1y?1+%2g°+% which yields e(w’) = e(w) -+ cyd,.

If ¢,d, > 0, then we put yha1+%2y%z’s, Hence e(w’) = e(w)+ ¢, d,.

If ¢;d, <0 and (d,+d,)e;< 0, then we put w' = a1+sy1g2yd,
This yields e(w’') = e(w)— (d,c;3 + dycy).

If ¢,d; <0, (dy+dy)e;>0 and ec;d, <0, then sgne, = sgne, =
sgn(d, +d,), and, therefore, putting w’ = yh1a%2y%s°1%%, we get e(w’)
= e(w) + (d, + dy) ¢y

2. e(w) < 0.
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If cad;, > 0 or (d, + d;) s > 0 or cyd, > 0, then we set w’ = a1+ 2y%1+925%
or w = a1*%yhx2y% or w' = a1yhig2t3y%, respectively, and we
obtain e(w’') = e(w) —c,d, or e(w’') = e(w)—(d,+d,)c; or e(w’') = e(w)—
— ¢yd,y, Tespectively.

I ¢,d, <0, ¢3gd; < 0 and c¢;d, < 0, then —sgne, = sgnd,, and we
put w’ = ary®r+iagftes, Thus e(w’) = e(w)+ ¢, d,. ,

If ¢,d, < 0, then we put w’ = yh1a1t%2y%22". Hence e(w’') = e(w)+
+ec,d,.

If ¢,d, > 0, (d,+d;)cs < 0 and ¢;d, > 0, then sgne, = sgne,, and we
set w' = yha2yR2a1ts, Hence e(w’') = e(w)+ (d, +dy)e,.

B. Let w = yh1a1y%a%2y®. We are going to prove that there exists
a word w’ of length not greater than 4 and such that a(w’) = a(w),
b(w') = b(w) and |e(w)| < |e(w’)]. We assume that not all exponents
in w are equal to 0. Consider two cases for e(w) = ¢,d; + ¢, d, + ¢, d,.

1. e(w) > 0.

If ¢,d, < 0 or cydy < 0 or (¢, +¢,)d, < 0, then put w’' = z“1yh1+ %z 2y%
or w = yhgfiteyhtds or w' = g1yhg2yh1t9 respectively. This yields
e(w') = e(w) —¢y,d; or e(w') = e(w) — ¢, d, or e(w') = e(w) — (¢; + ¢5)dy,
respectively.

If ¢;d, > 0, cyd;, > 0 and c¢,d, > 0, then we set w’ = yh1+dgrteryds,
Hence we obtain sgne, = sgnd,, and, therefore, e(w’) = e(w)+ ¢, d,.

If c,d, > 0, then we put w’ = yh1x1y%2*%5%. Thus e(w’') = e(w)+
+ ¢, d,.

If c,dy, < 0, ¢, d, < 0 and (¢,+ ¢,)d, > 0, then we set w’ = yH17%g1y% 5%,
Hence sgnd, = sgnd,;, and, therefore, e(w’') = e(w)+ (¢; +¢,)d,.

2. e(w)< 0.

If ¢,dy >0 or c,d,> 0 or (¢;+c¢;)d, > 0, then it suffices to put
w'’ =wclydl+d2wc2yd3 or w = ydlxcl+c2ydl+d3 or w' =mclyd2wc2yd1+d3, Te-
spectively. This yields e(w’) = e(w)—e¢,d, or e(w’) = e(w) —c,d, or e(w’)
= e(w) — (¢, + ¢,)d,, respectively.

If ¢;d, < 0, cody < 0 and ¢;d, < 0, then we set w’ = yhtdegfiteayds
This yields e(w') = e(w) + ¢, d,.

If c,ds < 0, then we put w’ = yh1a1y%*%y%, Hence e(w’') = e(w)+
+ ¢y d,.

If c,dy> 0, ¢c,d; >0 and (¢, +¢,)d, < 0, then we shall set w' =
yh+dsgliyde g% Hence sgnd, = sgnd, and e(w’) = e(w)+ (¢y+ ¢,)ds.

Now by induction on the length 2t of the word w = z/1y%...a%y%,
we see that there exists a word w’ of length not greater than 4
and such that a(w’) = a(w), b(w’) = (bw) and |e(w)| < |e(w’)|. Of course,
the exponents of w’ have the required property and the lemma
follows.

3 — Colloquium Mathematicum XXX.1
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LEmMMA 3. For k,l, n such that n > 0 and |k|+ |l| < n, we have

M, (k, 1) = max{max(py), max(kl—¢y)} and m,(k,1) = kl—M,(k,]1),
D D

where D = {(¢, v): lg|+ [k—¢|+ |v| + |l —y| < n}. Moreover,

(1) M, (—Fk, —1l) = M,(l, k) = M, (k, 1)
and
(2) M, (—Fk,1) = M,(k,1)— K.

Proof. It follows from Lemma 2 that M,(k,l) = e(w), where w is

a word of length not greater than 4, that is w = ™ yP1a®y® or w =
y*22%2yP12%, and the equalities a, +a, = & and b, +b, = ! hold. This means
that w is either of the form

gt ytrahy =t = oty'ly, )%
or

Since w belongs to F", we have |k— a,|+ |as|+ |by| + |1 — b1 < 7.
Similarly,

m,(k,1) = min{m}i)n(tpfp), min (k] —py)}
— —ma,x{—mDin (pw), —m;n (kl—oyp)}
= —max{mgx(—qnp), —kl—l—mgX(tpw)}
- _ma,x{—kl—}—mg,x(kt—w), —kl+m1‘;wX(w)}
=kl — max {mgx (pw), mg,x(kl —oy)}

= k— M,(k, 1.

Equalities (1) are evident and we have to check only (2). Let ¢’ = —¢
and D' = {(¢', ¥): l¢'| +|k—¢'| +|p|+ |l —y| < n}. We have

M, (—k,1) = ma»X{mI?X(W), mgX( —kl—oy)}
= max {ml-';'¢X( —¢'y), —kl +m;X(¢'w)}
= max {mja)'x (¢'y)— K, mg:}i( — @' p) + kl — El}
= max{mg}{(w'w), mg;l(kl—¢’w)} —kl
= M,(k,l)—Kl.

]
This completes the proof.
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LeMMA 4. Let k, 1, n be integers satisfying the inequalities 0 < k < n[2
and k<1< (n+k)/3. Then

k1) '
ML;L_) if n+k+1=0 (mod 4),
—14+k41\2
n : + ) if n+k+l =1 (mod 4),
T) -3 if ntk+1 =2 (mod 4),
—14k4+1\ 1
n : + )—Z if n+k+1 =3 (mod 4).

Let k, 1, n be integers satisfying 0 < k< n/2 and m+k)B3<<I<n—k
then

H

k—1
%-l if n+k—1 =0 (mod 2),
5 I ifnt+k—1=1 (mod 2).

Proof. First, we show that if k> 0 and [ > 0, then
M,(k,1) = mla)’x(‘P"/))1'
where the set D is as in Lemma 3. To do this, suppose that %, I, a; , b, > 0
and a,, by < 0. Observe that if (a,, by)e D, then (k—a,, max{b,, l})e D,

and, similarly, if (ag, by)e D, then (max{a,, k},1—b;)e D. We suppose
now that min(py) = ayb,. This gives
D

max (py) -+ min (gy) > (k — a,) max {by, 1} -+ ayb,
D D.
= kmax {b,, 'l}!—}— ao(bo—max{by, l}) > K.
Similarly, if min (¢y) = a,b,, then we obtain
D
max (py) + min (py) > (I — by) max (ay, k} + a,b,
D D

= lmax {ag, k} + by (@, — max {aq, k}) > kL.

Hence max (py) > kl — min (¢y) and, consequently, M, (k, 1) = max(py).
D D : D
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Now it is not hard to check that the function f(x,y) = xy takes
on the set {(x,y): |#|+ |[k—a|+ |y|+ |l —y| < n} the maximum value

E+1\2 k
(ﬁ_{_—i—) ifO<k<—’ri,ma,x{O,Sk—n}gl<n+ )
4 2 3
k—1 l k
max f(z,y) = %—l if 0<k< 5, n—‘: <l<n—k,
l—k
{%—k it —§<k<n, 0 <1< min{n—k, 3%k —n}.

LEMMA 5. Let G be the free nilpotent group of class 2 on two gener-
ators z,y. Let F = {x, ™', y, y~', 1}. Then, for every n, we have |F"| > cn*
and |F*—F"!| < ¢'n3, where ¢, ¢’ are constanis and ¢ # 0.

Proof. From Lemmas 1 and 3 we infer that

| = Z (2M,(k, 1) — Kl +1).
1kl +(li<n

Let
L ={k,): 0<k<n,0<I<n—k},
II, = {(k,1): —n<k<0,0<I<n+k},
IIT,, = {(k,1): —n< k<0, —n—Fk<
IV, = {(k,1): 0< k< m, n-l—k<l 0}.
Observe that
Kl =0

kI+1l<n

and that, for k,1> 0, by Lemma 4, we have M,(k,1)—kl > 0. In the
following estimation we use also (1) and (2) of Lemma 3:

1
SIE > ) Mk,
2 kl+lL<n

= M0, O)+2M(kl+2M (k, )+ ) M, (K, Z)+Z M,(k, 1)

III
42M (k,1)— 22kz 22kz

= 1—2("—1)n(n+1)(n+2)>cn4 for some ¢ # 0.
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Similarly, we have

1 1
S =P = 2 (M (ky D) =M s (R, 0)+ D (Moa(kyl)— M,y (B, 1)+

n 1 Hn—l

+ D (Ml ) =My (R, D)+ ) (My(ky 1) — M,y (k1) +

I, IV, )

FUL0,0~ M, 10,0045 3 (142M,(k, D).

1kl+1l|=n

Now, Lemma 4 gives M,(0,0)— M, ,(0,0)< n2/16. Using (1)
and (2) from Lemma 3, we have

D (Mo, )= My (B, 1) = 3 (M (K, )~ M,y (K, D)

 § i, ,

D (M (k) —M,_, (K, 1)) = Z(M ky ) — M, (k,1)).

IV, I,

We have also

25 (1+M, (K, 1)) < 4n+82:AIkAn k+4;:km k)

1kl +12=n k=0
n—1
-1 2
< 4n+ n(n 6)('n—|—1) —}-82(—;) < 8nd.
k=0

Hence
|ﬁm Y < ZSWﬂl(k 1) — M,_, (k, 1)) +2n?
n 1

(n—1)/2
< 2n3+2 zg(Mﬁhn—l—k%medhn—l—k»+

k=0 .
(n—2)/2 n—k-2

+2 ; g (M (Ky 1) — M, _, (K, D))

(n— 9
k—3—
< 208+ 208 42 2 «"+k+f+kmw _ 2m+wﬂ30+

(n—2)/2 (n+k—2)/3
T2 (

1 n+k+1\2 n+k+1-2
= — l
L 4+( 4 ) 4 )+

k=0 =k
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(n—4)/2 n—k—2
EPIEN
k=0 I=(nYk+4)/3
(n—2)/2 (n—2)/2 (n+k—2)/3
n+k\? n+k+1
<amer 3 (Ean 3T ST L
3 4
k=0 =k
(n—-2)/2 - n—k-2
+2Z Z l<cen® for some c,
k=0 I=(n+k+3)/3

n+k—1 ] n+k—1—-2 7
2 2

and the lemma follows.

3. THEOREM. Let H be a nilpotent group on generators h,, h,. Then
H satisfies (D) with 8 = {1, hy, h{'Y, hy, h3'}.

Proof. Suppose, first, that H is the free nilpotent group of class 2.
Then, by Lemma 5, we have

Lszn _ S2'n— l| cnd

[S;n| < pop —-0.

Now let H' denote the commutator subgroup of H and let e, = expH
and e, = expH', where by exp G we mean the minimal natural number »
such that ¢" = 1 for all ge G. Of course, if H is free, then ¢;, = 0 and ¢, = 0.

If ¢, > 0 and e, > 0, then H is finite and there is nothing to prove.

~ If ¢, =0 and e, = 0, then an easy argument shows that H is the

free nilpotent group of class 2. Indeed, let H = G/R, where @ is the free

nilpotent group of class 2 on generators z,y and R is its normal sub-
=1 ,,—1

group. We have to show that B = 1. If » = 2°¢°[y, #]°¢ R, then r 'z~ 'rz
= [y,z’« R and r 'y~ 'ry = [y, 1%« R. Since ¢, = 0, we get a = b = 0,
and, therefore, ¢ = 0. Thus R = 1.

Suppose ¢, = 0 and ¢, > 0. Let H = G/|R, where G is the free nilpotent
group of class 2. Observe that (') < R. If |k|+ || +4e, < n, then all

elements of the form 2*4'[y, #]°(G")?, 0<c¢< €, are in 8"~!. Thus
8" — 8" 1 < ey l{(ky1): n—1—4de, < k+1< n}| < 4ey(4e,+1)(n+1).

Let A = {2*y"*R: 0Li<n} and B = {o™"""y'R: 0<i<n}.
Clearly, A, B = 8" —8""'. We show that [A| = n or |B| = n. Suppose,
to the contrary, that |4| < » and |B| < n. Then 2°y %< R and z°y’< R
for some a = 0 and b 0. This yields [y, #]% [y, #]°¢ R. Since ¢,(H) = e,,
¢, must divide a and b. From this we infer that both 2®y~* and z®y®
belong to R. Thus #**® and %*® are in R. But this is impossible, because
of ¢,(@) = 0. Thus |A| =n or |B| = n. Therefore, |S"— 8"~} > n.

Since

187 = 18]+ ) I8 — 81,
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we have |S"| > 4(n —1)(n—2). Therefore,

Iszn_ S2n—1| cn
| 8" =o' n?

for some constants ¢, ¢’, and the theorem follows.
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