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This paper is a continuation of Part I which also appeared in this
journal('). The definitions, notations and conventions of Part I remain in
force. In particular, m is always an infinite regular cardinal, and in an m-
lattice, every nonempty subset of cardinality less than m has a join and meet.
The Whitman conditions (, W), (, W), (W,) and (W) refer to Theorem 1.1,
the Structure Theorem for Free m-Products.

After some introductory remarks, we begin with Section 3, where we
prove that F_(3) is not m*-complete. In Section 4, we show that free m-
products are only rarely m*-complete.

Let m' < m be an infinite regular cardinal and let ¥ =(L;|i€l) be a
family of m-lattices. Clearly, % is also a family of m'-lattices. If K is the free
m'-product of ¥ and Lis the free m-product of &, then the natural nr'-
homomorphism ¢: K — L (that maps each L; identically) is one-to-one.
Hence, K is an nt'-sublattice of L. However, K is not necessarily an intact
sublattice of L. For example, if m' = Ny, m=N,, and ¥ = (Lo, L,) with L,
=w+1and L, = {e}, then \/(n A e| n <w) = A e in K, whereas the two
sides of this equality represent distinct elements in L. (The Structure
Theorem of Section 1 can be used to verify these facts.) In Section 5, we
show this example to be typical.

For any poset X, we investigate the natural (one-to-one) m’-homomor-
phism

lb: CFm’ (X)—’ CFm(X)

that maps X identically. In Section 6, we show that both ¢ (of the previous
paragraph) and y preserve coverings; e.g., if a<b in K, then a<b in L.

3. F,(3): Fixed points and completeness. Let f=f(y) be a unary alge-
braic m-function of F_(3). Equivalently, f is an m-polynomial in
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156 G. GRATZER AND D. KELLY

1y, X0, X1, X5} where y is a variable (indeterminate) and x,, x;, x, are the
free generators of F(3). We interpret f as a function from F(3) to itself. If
f(a) = a for some aeF, (3), then a is called a fixed point of f.

The topic of fixed points is certainly of independent interest. For
example, what conditions guarantee that a unary algebraic function of F(3)
has (does not have) a fixed point? The function f in the following theorem
has been considered by Ph. M. Whitman [22], R. P. Dilworth [5], and P.
Crawley and R. A. Dean [3]. However, the result is new, even for m = N,.

THeOREM 3.1. If

SO =Wy ~Axo) v x1) AX3)V Xo) A Xy)V Xp,

then f: F_(3)— F,(3) does not have a fixed point.
Proof. (All subscripts are to be taken modulo 3.) For i=0, 1, 2, we
define:

L) =((y Ax) VvV Xis1) AXige2) VX) A Xig1) V Xy
and, dually,
GO =y v x) AXis1) V Xis2) AX)V X 1) A Xjgae

If any one of these six functions has a fixed point, then each one does. For
example, if a is a fixed point of f;, then a A x, is a fixed point of g,. By way
of contradiction, let us assume that these six functions each have a fixed
point. Let a be the fixed point of lowest rank, which by symmetry and
duality, we can assume to be a fixed point of f =f,.

Clearly, ae[(xo A x;) vV X3, ((X2 v Xo) A X;) v x;]. Consequently, we
have xo £a, x; || a and x, <a. From a =f(a) it now follows that a is
join-reducible.

Let p=\/T be an m-polynomial of minimum rank that represents a
and is in normal form (see Jonsson [15] or Gratzer and Kelly [9], and the
proof of Theorem 1.12). Throughout the rest of this proof, f and g, (written
on the right) represent the maps from P, ({xq, Xx,, X,}) to itself defined by the
formulas given above. Also, for any m-polynomial g, let gh denote

(((q A Xo) V X)) A X;3) V Xg.

By Corollary 4 of [15], since p is a normal representation and
p=(phnrx)Vvx,=pf, T=TyuT,, where T,=/{teT|t<phnA x,} and
T, = !teT|t € x,}. Consider the valid inequality:

ph A x; < (\V To) Vv x,.
Note that the right-hand side represents a. Thus, (, W) would imply that
Xo < a or x; <a, a contradiction. Also, ph A x; € x, implies that a < x,,
which is also untrue. Therefore, (W,) applies and ph A x; S q for some
qge T,.
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Consequently, ph A x, = q. Therefore, pf = q v x,. Since p = pf, we obtain
q9, = q. Thus, ¢ represents a fixed point b of g, and b has lower rank than
a. This contradiction completes the proof of the theorem.

The next two results were proved for m = N, and free lattices by Ph. M.
Whitman [22]. Our proofs are based on his ideas and on Theorem 3.1.

ProposiTION 3.2. Let L = CF, (X) for a poset X, and let T be a subposet
of L that is isomorphic to the initial ordinal m. If b =supT exists in L,
then for any aeL,

suplant|teT]) =anAb.

Proof. Let ceLsatisfy a At < ¢ for all te T It suffices to show that
a A b < c. We show this by induction on the rank of c. This is trivial if ce X
or ¢ is an m-meet. Thus, we can assume that ¢ = \/ S. Consider the m valid
inequalities:

ant<\/S, teT

Let T'={teT|t<c}. If |T'| = m, then T’ is cofinal in T, whence b < c. If
a'< ¢, we are also done. Therefore, by (W ). we can assume that there is an
se S such that [{re T| a A 1 <s)| = m. This means that a A t < s for all te T.
By induction, a A b < s < ¢, completing the proof.

Remark. Proposition 3.2 does not claim that, say, L= Fy, 3) 1s
continuous. In fact, failures occur in L for chains of cardinality N, and ¥, .
However, Proposition 3.2 does imply that CF\,(X) is continuous, generaliz-
ing a result of Whitman [22].

THeoreM 3.3. F, (3) is not m™-complete.

We first present a simple proof under the Generalized Continuum
Hypothesis (G.C.H.). As usual, the cardinal 2™ denotes (2" | n < m). Note that
m< 2" Under G.CH, 2" =m. Since F, (m) is isomorphic to an m-
sublattice of F, (3) by Crawley and Dean [3], we have |F | =2™ If |X]
= m, it is well known that 2%, the poset of all subsets of X, contains a
subposet Y with |Y| = 2™ such that any complete lattice that contains Y as a
subposet also contains 2*¥ as a subposet. If 2" =m, |Y| = m, then and
therefore, by [3], F,(3) contains Y as a subposet. Since |[2*|=2">m
=|F, (3), F,(3) cannot contain 2*. Therefore F,(3) is not complete.

Proof of Theorem 3.3. Let L =F, (3), let f be as in Theorem 3.1 and
inductively define a, (x < m) by:

ap = X3;

ag+1 =f (ap);

ag=\/(a, |« <P)if B is a limit ordinal.

P. Crawley and R. A. Dean [3] showed that if « <f < m, then a, <a,.
(Theorem 3.1 could replace part of their argument.) Let T= {q, | « < m}. We
shall show that T does not have a supremum in L.
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Suppose the contrary and let b =supT By three applications of
Proposition 3.2,

sup{f(t)| te T} =f(b).
Thus, b =f(b), contradicting Theorem 3.1.

4. When are free m-products complete? Let C, denote an n-element
chain. The lattices C, * C, and C, x C, were described by H. L. Rolf [18] (see
also Gritzer [6]); both df these infinite lattices are complete. If m is
uncountable, we show in [10] that C, x,, C, (resp., C, *, C,4) is complete and
is obtained by adding 14 elements to C, * C, (resp., C, * C4). In particular,
C,*,C, and C, x,C, are countable for all m.

To show that an m-lattice L is not m*-complete, it suffices by Theorem
3.3 to show that F, (3) is a closure sublattice of L (since a closure sublattice
of an m*-complete lattice is itself m*-complete). Theorem 2.2(B) says that
K is a closure sublattice of L whenever L is a completely free m-lattice
generated by a poset and K is the m-sublattice of L m-generated by a subset
of cardinality less than m. Consequently,

ProrosITION 4.1. If X is a poset containing a 3-element antichain, then
F,,(3) is isomorphic to a closure sublattice of CF, (X), and consequently,

CF . (X) is not m*-complete.
We shall need the following

LeMMA 4.2. Let w' < m be an infinite regular cardinal. Let L be an
m-lattice that satisfies (W,) and let X < L with 0 <|X| <wm’. If X w'-
generates an m'-sublattice isomorphic to CF,.(X), then X m-generates an m-
sublattice isomorphic to CF  (X).

Proof. Let K be the m-sublattice of L wm-generated by X. Let
@ # S < X and assume that x <\/S in L for some xeX. Since |S| < m,
x <s for some seS by the Structure Theorem for CF, (X). Dually, if
/\S < x for some xe X, then s < x for some seS. Since K satisfies (W), it
now follows from Jonsson [15] that K is isomorphic to CF,(X).

We now generalize the main result of Gradtzer and Kelly [8].

THEOREM 4.3. A free m-product of more than two m-lattices is never m*-
complete. If A and B are wm-lattices, then L = A x, B is m-complete iff, up to
isomorphism, A =B = C, or {4, B} = {C,, C,} for ne{l, 2, 3, 4].

Proof. If Lis the free m-product of (L, | ie I) with |I| > 3, then choose
one element in each of three L;’s and apply Proposition 2.1 to conclude that
F . (3) is a closure sublattice of L. Consequently, Lis not m* -complete. Since
the lattice C, «C, is finite for n =1, 2, 3, it is certainly complete. We have
already mentioned that, by [10], C,*, C, and C, %, C, are complete.

" If A is not a chain, then F(2) € A, and by Proposition 2.1, F(2)*,,C,
= F,.(3) is a closure sublattice of L. Hence, we can assume that both A and
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B are chains. If |A| = 1 and |B| > 5, then C, #,Cs is a closure sublattice of L.
Otherwise, we can assume that [4| > 2 and |B| >3 and therefore, that
C,#*,C; is a closure sublattice of L. H. L. Rolf [18] showed that both
C,*Cs and C,xC; contain F(3) as a sublattice. By Lemma 4.2, both
C, *,Cs and C, x, C; contain F,(3) as an m-sublattice. Hence, by Theorem
2.2(B), F,(3) is a closure sublattice of each. Consequently, L contains F, (3)
as a closure sublattice whenever A and B are not as in the statement of the
theorem. This completes the proof of the theorem.

CoRrOLLARY 4.4. If Lis the free m-product of at least two m-lattices, then

the following five conditions are equivalent.
(1) Lis complete.

(i) Lis m*-complete.

(ili) All m*-joins exist in L.

(iv) L does not contain F,(3) as an m-sublattice.

(v) L does not contain F,(3) as a closure sublattice.

Moreover, if m is uncountable, another equivalent condition is:

(vi) L is countable.

Proof. The implications (i)=>(ii) and (ii)=>(iii) are trivial, while (iii)
=(v) follows by Theorem 3.3. The implication (v)=(i) follows from the
proof of Theorem 4.3. By Theorem 2.2 (B), (iv) and (v) are equivalent
whenever L is a free m-product of finite chains (which L must be in order to
be complete).

We can prove the following generalization of Proposition 4.1 using the
techniques used in proving Theorem 4.3. (Disjoint union of posets is denoted
by +.)

THeoreMm 4.5. If X is a poset that contains C,+C,+C,, C,+C; or
C,+Cs, then F, (3) is isomorphic to a closure sublattice of CF(X), and
consequently, CF (X) is not m*-complete,

5. Failure of intactness upon increasing nu In the introduction to Part II,
we gave an example of finite lattices L, and L, where Ly * L, is not an intact
sublattice of Lo *y, L,. Two further examples are given by L, = L, = C, and
L,=C,, L, =C,. We now indicate why C, »C, is not an intact sublattice
of C,*,C, for uncountable m. Let a; <a, and b, < b, be the two chains.
Set u, = a, and vy = by ; inductively define (for n > 1)

u,=a, v(a nv,-y) and v,=b, v(b; Au,_,).
Let S = {u, Av,|n<w}. In C,*C,,
SUpS =(a1 \% bl) Aa; A bz,

while the two sides differ in C,*,C,. Similarly, C, *C, is not an intact
sublattice of C, x, C, for uncountable m.
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THEOREM 5.1. Let m’ be an infinite regular cardinal with 2™ < m and let
& be a family of at least two m-lattices. Let K be the free m’'-product of &
and L be the free m-product of &. K is an intact sublattice of L iff one of
the following two conditions holds:

(i) m' =Ny and K is finite (that is, & is (C,, C,), (C,4, C3), or (Cy, Cy));

(i) m' > Ny and K is complete (so & consists of two chains as described
in Theorem 4.3).

Although, it seems reasonable that Theorem 5.1 would remain valid if
the hypothesis 2™ < m were replaced by m’ < m, we are unable to prove
this. Our proof of this theorem requires the existence of a nonzero meet-
reducible element a of F,,(3) which does not cover any element of F_(3). (We
also say that a has no lower cover.) In fact, we can show

LEMMA 5.2. Let L be a lattice satisfying (W) and (SD ,), and assume that
ag, a4, bo, bIGL. Ifa =dy A a; <b0 \'% bl’ a”b,- and a,- $ avVv b_] (i,j= 0, 1),
then a is meet-reducible and has no lower cover in L.

Proof. Clearly, a is meet-reducible. Thus, a can have at most one lower
cover ¢ by (W). Assume that such c exists. Let us suppose that a < b; v ¢ for
i=0or 1. Since ab;,, a€c and ay A a; < b; v ¢, it follows by (W) that
a; < b; v c for j =0 or 1. Consequently, a; < a v b;, contrary to assumption.
We conclude that aflb;ve (i=0, 1). Therefore, c=a A(by v )
=a A(b; vc). By (SD,), c=a A(by v by v ¢) < a. With this contradiction,
the proof is complete.

If x,, x;, x, are the generators of F, (3), then (xov x,) A
A (X9 V X3) A (x4 V X,), the upper median, has no lower cover. (Take by, = x,
and b, =x, in Lemma 5.2) Since F,(3) contains F, (m) by [3], this
argument yields m elements of F, (3) that do not have any lower covers. We
do not know whether F (3) contains an element that has no lower cover and
no upper cover.

Proof of Theorem 5.1. If (i) or (ii) holds, then K = L. If m’ = N, and
& is (C,, Cy) or (Cy, C,), then we have already observed that K is not an
intact sublattice of L. If K is (m)*complete, then by Theorem 4.3, (i) or (ii)
must be satisfied. We can therefore assume that K is not (m’)*-complete.
Hence, by Corollary 4.4, there is a three-element subset Y of K such that

(a) K', the m'-sublattice of K generated by Y, is isomorphic to F . (3).

(b) K’ is a closure sublattice of K.

Moreover, by Lemma 4.2, the m-sublattice of L generated by Y is
isomorphic to F (3). Let a be a nonzero meet-reducible element of F.(3)
that has no lower cover, and let S be the set of all elements seF_.(3)
satisfying s < a. Clearly, 0 <|S|] < m and a = supS in F . (3). Identifying K’
with F_.(3), we conclude from (b) that a =supS in K. Since a is meet-
reducible in L, a# \/S in L. Hence, K is not an intact sublattice of L.
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CoroLLARY 5.3. If ', K and Lare as in Theorem 5.1, then the following
five conditions are equivalent.

(1) K is an intact sublattice of L.

(i) All existing (m')*-joins in K are preserved in L.

(iii) All existing (n')*-meets in K are preserved in L.

(iv) K = L.

(v) K and L are isomorphic.

Proof. Since the equivalence of (i), (ii), (i), and (iv) follows from the
proof of Theorem 5.1, it remains to show that (v) implies (iv). Assume that
K and L are isomorphic. In particular, K is (m')"complete. If n' is
uncountable, then we are done by Theorem 4.3. Therefore, we assume that
m =N,. If Zis (C,, C,) or (Cy, C,), then K and L are not isomorphic (see
[10]). Thus, by Theorem 4.3, we can assume that ¢ is (C,, C,) for n=1, 2,
or 3. Hence, K = L, completing the proof.

6. Preservation of small intervals upon increasing . Throughout this
section, m’ is an infinite regular cardinal and m’ < m. We need to generalize
the usual concept of breadth. An m-lattice has breadth nt iff whenever T< L
with 0 <|T| < m, there is T' = T with 0 <|T’| < w' for which \/T"'=\/T,
and dually. Clearly, for uncountable i, an m-lattice L has breadth N, iff
every chain in L is finite. The following theorem, the main result of this
section, says that increasing m does not add any new elements to small
intervals.

THEOREM 6.1. Let mi' < m be an infinite regular cardinal. For iel, let L,
be an m-lattice of breadth w'. Let K be the free nw'-product of & =(L; | iel)
and let L be the free m-product of . If a < b in K and |[a, b]x| < w, then
[a, b]K = [a’ b]L

In the statement of Theorem 6.1, |I| < m’ could be assumed without any
loss of generality. (If |I| > n', then |[a, b]i] = m’' always holds.)

The most familiar example of a small interval [a, b] is a prime interval;
i.e., a <b. We start with a proof of Theorem 6.1 in the special case: m’ = N,
|IL;l =1 for all iel, and a <b. By the previous remark, we can assume that
K =F(n) and L= F, (n) for some positive integer n. By McKenzie [17],
there is a congruence on K whose classes are closed intervals, finite in
number, such that a and b are in different classes. Clearly, this congruence
induces an m-congruence on L that has the same properties- — in fact, the
classes have the same bounds. Let ¢ (resp., d) be the upper (resp., lower)
bound of the class containing a (resp., b). Since botha=b Acandb=a v d
hold in K, they hold in L too. This means that a <b in L.

The following two lemmas lead to the Approximation Theorem from
which Theorem 6.1 follows easily. ,

LemMMA 6.2. Let & =(L; | i€l), K and L be as in Theorem 6.1. Let T< L
with 0 < |T| < m, let ae K, and let us assume that a < \/ Tin L. Under these

2 — Colloquium Mathematicum L.2
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assumptions, there is a subset T' of T with 0 < |T'| < m’ such that a<\/ T
Proof. If a®<(\/T), for some iel, then a<\/(t;|teT)

=\/(ty | te T') for some T' < Twith 0 <|T’| < m' since L; has breadth nt.
If a=\/S with 0 <|S] < m’ and each element of S has lower rank than a
has, then we can assume by induction that, for each se S, there is T, = T with
0 < T, <w' such that s <\/T,. Obviously, T'={J(T,|seS) satisfies the
conditions of the lemma. If (W) holds for a < \/T, the statement is obvious.
Otherwise, we can assume that (, W) applies, in which case the result follows
easily by induction.

LemMa 6.3. Let & = (L; | iel), K and L be as in Theorem 6.1. Let S = K
with 0 <|S] < nt’ and let T< L with 0 <|T| < m. Under these assumptions,
there exists T' = T with 0 <|T'| <’ such that, setting a=\/T and d
= \/T', the following two conditions hold whenever seS:

() s<aiff s<a,

(i) a<s iff d <s.

Moreover, if J = I with 0 <|J| < nt, we can also require the following for
all ieJ:

(i) ag, = (@)),

(iV) a? = (a')(i).

Proof. Let S, = {seS|s<a}. If se8§,, then by Lemma 6.2, there is
T, < Tsuch that 0 <|T;| < m’ and s < \/T;. Let S, = {seS | a<s}. If seS$,,
then there is s*e T such that s* £ s. For each ieJ, choose R; = T with |R||
< mt' such that a; =\/(t; | teR) and a® =\/(t? | teR).

T =U(T, | seS)u {s* | seS,} UU(R; | ied)

satisfies the conditions of the lemma.

Let pe P, (X) for an arbitrary set X. The (set of) components of p,
denoted by Komp(p), is the subset of P, (X) that is inductively defined as
follows:

(i) Komp(x) = {x} for any xe X,

(i) If p is \/S or AS, then

Komp(p) = {_P} v {Komp(s) | seS).

Note that |[Komp(p)] < m. A subset S of P, (X) is called component-
closed if Komp(p) = S whenever peS. Clearly, S is component-closed iff \/T
or /\T being in S implies T<S. If S <P, (X), then we set Komp(S)
=) {Komp(p) | peS}. Note that Komp(S) is component<closed and
|[Komp(S)| < m whenever |S| < n.

THEOREM 6.4 (The Approximation Theorem). Let w', ¥ = (L, | iel), K
and L be as in Theorem 6.1. Let ce L, S < K with |S| < m’ and J < I with |J|
< m'. Under these assumptions, there exists de K such that the following four
conditions hold whenever seS and ieJ:
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(1) s<ciff s<d,
(i) c<s iff d <s,
(iii) C(,‘) = d(l'),

(iv) ¢ = d".

Proof. Set X =(J(L;|iel). Let peP,(X) represent ¢ and let
R c P, (X) represent the elements of S. We can assume that R is
component-closed and that 0 < |R| < m’. We can further assume that ieJ
whenever r; or r¥ is proper for some reR with iel. We shall define
qge P, (X) to represent the desired element d. If pe P, (X), we set ¢ = p. By
duality and induction, we can assume that p = \/7: and for each te T, there
exists t*e P, .(X) such that the following four conditions are satisfied
whenever reR and ieJ:

rctr iff r ¥,
tcr Wff t*cr,
tiy = %)y
D = (%)

By Lemma 6.3, there is T"<= T with 0 <|T'| <m’ such that the
following four conditions are satisfied whenever re R and ieJ, where

p*=\/(t*|teT) and q=\/(t* | te T):

(a) rcp* ff rcy,
(b) p*cr iff qgcr,
(c) (P*)(.') = (q)i)»
@ (") = (q)"”.

Clearly, g€ P, (X). It is obvious that p;, = g;, and p¥ = g whenever ie J. It
remains to show that the element d of K represented by g satisfies conditions
(i) and (ii) of the theorem.

Let re R and suppose that r < p. If (C) applies to this inequality, then
'Y < pg in L; for some ie J. Since p;, = gy, it follows that r € ¢. If r = \/U
with U < P,.(X) and 0 <|U| < n?, then u < p for all ue U. Since ueR, we
conclude by induction that u = g. (This is the crucial siep in the proof.)
Consequently, r < ¢. If r is an m’-meet and (, W) applies, we can conclude
that r < g by similar reasoning. Finally, we can assume that (W) applies to
r < p. This means that r =t for some te T. Therefore, r = r* < p, and, by (a),
rcaq.

Conversely, we now assume that r = q with reR. If (C), (,W) or (, W)
applies, then we can show that r < p as above. Otherwise, r = r* for some
te T'. Therefore, r =t < p, completing the proof of (i).
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We now verify (ii). Let p =r with reR. For each teT, t =r. Thus,
t*<r for teTand qc<r. .

Conversely, let g = r with re R. By (b), p* =r, which implies t* = r and
t =r whenever te T Thus, p =r. This completes the proof of the theorem.

Proof of Theorem 6.1. Suppose that ce[a, b], but c¢[a, b]x. For
this element ¢ and for S = [a, b]y, let de K satisfy the conditions of Theorem
6.4. Since a, beS, it follows by (i) and (ii) that a <d < b. Hence, deS.
Therefore, ¢ = d follows by (i) and (ii), contradicting c¢S. This completes the
proof of the theorem.

Observe that the above proof does not use conditions (iii) and (iv) of
Theorem 6.4; however, these two conditions are essential to the proof of
Theorem 6.4.

The following analog of Theorem 6.4 for completely free m-lattices has a
similar proof.

THEOREM 6.5. Let m" < m be an infinite reqular cardinal and let X be a
poset. Let K be CF,.(X) and let L be CF, (X). Let ce L and let S = K with
IS| < m'. Under these assumptions, there exists de K such that the following
two conditions hold whenever seS:

(1) s<c iff s<d,

(M) c<s iffd<s.

Using Theorem 6.5, we can prove:

THEOREM 6.6. Let wt', K and L be as in Theorem 6.5. If a<b in K and
|[a, b]x| < M, then [a, b]x = [a, b],..

Let K and L be as in Theorem 6.1 (or 6.6). Since usually K # L,
Theorem 6.1 (or 6.6) would certainly become invalid if one merely removed
the cardinality restriction on S = [a, b];. We now give examples showing
that even [a, b], is not ni-generated by [a, b]i. T will denote the m-
sublattice of L m-generated by [a, b]x.-

Let K = C,*C, and L = C, %, C, (m uncountable). Let a, < a, and b,
< b, be the two chains. Set a =a; A b, and b =(a, v b;) A a; A b,. In this
case |(a, b],—S| =5 1fu=\/, (4, | n <w) and v = \/ (v, | n < @), where u,
and v, (n < w) are defined at the beginning of Section 5, then [a, b],—T
= UAUV U U, UV D).

Let 2" <m, K=F_ () and L=F_(3). Let a=x, A x; A X, and
b=(xo v X;) AXo V X3) A(X; Vv X,), the upper median. Let ¢ = \/,[a, b]k.
Clearly, ¢ <b. M =[a,c]pu{b} is an m-sublattice that includes .
Therefore, T< M. However, M, and therefore T, does not include
(xo vV ©) A(xy Vo)

If w' =N, K is as in Theorem 6.6 and a <b in K, then requiring all
chains in K between a and b to be finite will force [a, b]x to be finite. In
fact, we shall show that this even holds in some interesting cases for
Theorem 6.1. A subset D of a lattice Lis disjoint iff x A y =u A v whenever









