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EXTENSIONS OF POSITIVE OPERATORS
AND EXTREME POINTS. IV

BY

Z. LIPECKI (WROCLAW) axp W. THOMSEN (MUNSTER)

The present paper* contains complements and comments on some
results given in the preceding parts [4], [6] which will be further referred
to as I, II, and III.

The paper falls into two independent sections.

In Section 1 we characterize the band generated by a vector subspace
of an order complete vector lattice by means of an approximation condition
considered in II, Section 2. This characterization allows us to establish
a common generalization of two closely related results on lattice homo-
morphisms obtained independently by Luxemburg and Schep [6] and
the first-named author II, IIT (see Theorem 3 below).

In Section 2 we deal with the existence of positive extensions of a
given operator the domain of which is not necessarily majorizing. Our
results are related to the classical theorem of Kantorovié, its improvement
given in II, and its version for spaces with an order unit given in I.

Our notation mostly follows that of I-ITII. The terminology we use
is standard. |

Throughout Y stands for an order complete real vector lattice. For
a subset N of Y we denote by B, the band generated by N. As well known,
By = N+1, where N' stands for the set of all elements of ¥ which are
disjoint to every element of N. By X we denote an ordered real vector
space. In Section 1 we assume X to be directed by its ordering. For the
meaning of the symbols E(T,N), E(T), T;, T,, T,(x+), and T,(z—)
gsee I, p. 279-281. The symbols S,, and H(X, Y) are defined in IIT,
P. 263-268.

1. Bands and extreme extensions. We start with a characterization
of bands.

* The paper was accomplished while the first-named author was visiting the
University of Miinster in autumn 1979. He wishes to express his gratitude to
Prof. D. Plachky and Dr. W. Thomsen for their hospitality.
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THEOREM 1. Let N be a wvector subspace of Y and let y € Y. Then
y € By if and only if

inf {jy —v|: v e N} = 0.

Proof. Put P(y) = inf{ly —v|: ve N} for y € Y. We have to prove
that P~'(0) = By.

The inclusion “< ” follows by the Riesz decomposition theorem, as for
Y1 € N+ and y, € By we have P(y,+9,) = || +P(¥,).

As N < P7'(0), in order to prove the other inclusion, it is enough
to show that P~'(0) is a band in Y. Observe first that P is a sublinear
map of Y into Y, whence P~'(0) is a vector subspace of Y. Moreover,
P~1(0) is an order complete sublattice as if A = P~!(0) and y = sup A,
then |ly—v| < (y—a)+|a—v|, and so P(y) <y —a holds for all a e A.

Put K ={ye¥: y,<y<y, for some y,,y, e P~'(0)}. It remains
to show that K = P~!(0). Let T be the identity operator on P~*(0).
Then, in view of I, Theorem 3, and the definition of P, we have
T e extr E(T|N, P~'(0)). Suppose ¥y € K\P~'(0). Then P(y) >0, and so
T,(P(y)) > 0. As P~'(0) majorizes K, it follows that there exists
S e extr E(T|N, K) with 8(P(y)) = T.(P(y)) (see II, Theorem 1 and the
proof of Lemma 1). In view of I, Theorem 3, inf{S(|ly —»|): ve N} = 0,
whence S(P(y)) =0, a contradiction.

As an immediate consequence, we obtain a result which clears up the
strength of an assumption made in II, Corollary 3.

COROLLARY. Suppose we Y, . Then w is a weak order unit of Y if
and only if

inf{jy—tw|: te R} =0

for each ye Y.

Remark 1. The Corollary can also be obtained without referring
to I and II. In this case it is enough to apply the representation theorem
for M-spaces ([2], 4.3.9) in the final part of the proof of Theorem 1.

THEOREM 2. Let M be a vector subspace of X with M = M, —M
and let TeL (M, Y). Then

extr B(T) = extr(E(T)nL, (X, Brpy)).
Proof. Let S eextrE(T) and x €X. Then, by III, Theorem 2,
i nf{S,(x—=2): 2 € M} = 0. Hence
inf{|S(x)—8(2)|]: 2e M} =0,

and so, in view of Theorem 1, §(2) € By, . This proves the inclusion “< .
The other inclusion follows from the fact that E(T)nL, (X, Bpgyg)
is an extreme subset of E(T). '
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The next theorem gives a more precise form to Theorem 3 of III.
Part (b) also covers a recent result of Luxemburg and Schep ([6], The-
orem 4.1) obtained independently of II and III.

THEOREM 3. Let M be a vector subspace of X with M = M, —M_
and let Te H(M, Y). Then

(a) extrE(T) = E(T)nH(X, Brpay)-

(b) If M is majorizing, then extrE(T) = E(T)nH (X, Y).

Proof. According to III, Theorem 3 (a), extrE(T) <« H(X, Y). This
yields the inclusion “c” of (b) and, in view of Theorem 2 above, the
corresponding inclusion of (a). The other inclusion of (a) is a consequence
of IIT, Theorem 3 (b), and Theorems 1 and 2 above. The other inclusion
of (b) follows from (a) as for 8 € E(T) we have 8(X) c Bpy,,.

Remark 2. Clearly, the analogue of Theorem 2 for set functions
holds true (cf. I, Section 2).

2. Remarks on the existence of positive extemsions. The classical
theorem of Kantorovié (see, e.g., I, Theorem 1) assumes that the domain
of a positive operator T' to be extended is majorizing. This yields, in par-
ticular, that T, > —oo. As easily seen, the latter condition is necessary
for the existence of positive extensions of T'. It is also sufficient in spaces
with order unit (I, (ii)), and so in finite-dimensional spaces (cf. [3], (12.4)).
In general, however, it does not suffice as shown by an der Heiden ([1],
the Example). We shall give another example to the same effect.

Example 1. Let (2, 2, u) be a non-atomic probability space and
denote by L,(u) the vector lattice of real-valued measurable functions
on Q. Put M = {t1,: ¢t € R} and define T: M — R by T(t1,) =t. Then
T,(x) = esssupa for x € Ly(u), and so T,(x) > —oco. However, E(T) =0
since, by a well-known theorem of Nikodym, there are no non-zero (linear)
functionals on L,(x) which are continuous with respect to the topology
of measure convergence, and each positive functional on L,(u) would
be continuous ([2], 3.5.6).

In contrast with the example above, we note the following

THEOREM 4. Let M be a vector subspace of X and let T e L (M, Y).
Then the following three conditions are equivalent:

(i) E(T) +9.

(ii) There ewists a sublinear map P: X — Y such that P(x) < T,(x)
for each x e X.

(iii) There exists a superlinear map Q: X — Y such that Q(z) < T,(x)
for each x e X.

Proof. Clearly, (i) = (ii) and (i) = (iii). The converse to the first
implication follows from a generalized version of the Hahn-Banach theorem
([2], 2.5.7) and Remark 2 of III.
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We shall prove that (iii) = (ii). To this end put
P(2) = inf{T,(2,) —Q(—=,): @y, %, € X and z,+, = }

for » € X. Since @(0) =0 and 7,(0) =0, we have P< T, and P < .
Moreover, T, —¢ > 0 implies P(0) = 0. Hence, as P is, clearly, subaddi-
tive, P(z) > —P(—x), and so P(xr) > — oo for all z € X.

Remark 3. For Y = R, the implication (iii) = (i) of Theorem 4
also follows from a result of Klee ([3], Theorem (12.2)).

Next we give an example where E(T) # @ but extrE(T) = @. This
example is in contrast with Theorem 1 of II according to which extr E(T)
# @ if the domain of T is majorizing.

Example 2 (ef. [2], p. 162, Remark 1). Let (2,2, u), M, and T
be as in Example 1. We regard M as a subspace of L,(u), where 1< p
< oo: Then, according to a well-known representation theorem, E (T}
can be identified with the set

{f € Ly(p),: [fdp = 1},

where ¢ is tho exponent conjugate to p. Now, as u is non-atomic by assump-
tion, it is easily seen that E(7T) has no extreme points.

We close with an example showing that Theorem 2 of I fails when R
is replaced by RZ.

Example 3. Let X be an ordered vector space with an order unit,
let M be a subspace of X, and let T € L (M, R). Put T = (T, T) Then
TelL +(M, R?), where R® is equlpped with the usual ordering, and T (z+)

(Ti(m—f—),T (z+)) and T,(z—) = (T, (v— (—)) for all zelX.
Assume for some z,€ X we have T,(z,+) < Te(mo—) but there is no
S8 e E(T) with S(x,) = T;(xo+) (see I, the Example). Take te R with
Ty@o+) <t< T,(my—). We have (T;(z,+),1) € 1T:(xo+), T,(z,—)[ but
there is no V eE(T) with V(z,) = (T w,,-l- t).
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