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ON MAXIMAL AND COMPLETE REGIONS

BY

M. A. SELBY (WINDSOR, ONTARIO)

1. Introduction. In this paper* the relationship between bounded
maximal regions and regions complete with respect to the Carathéodory
metric is obtained. An interesting characterization of complete regions
is given. .

Maximal regions are those which are natural boundaries of a single-
-valued bounded analytic function. They are considered in [3]. Complete
regions are studied in [4].

2. Definitions. Let X be a bounded region in the plane. H*(X)
will denote the set of all single-valued bounded analytic functions on X.

Let feH*(X). If X, is a region such that X,nX @ and if there
is a function f,e H*(X,) such that f(z) = f,(2) for ze X,nX, we say that f
can be extended to X,.

A boundary point x of X is said to be removable if, for every fe H*(X),
there exists a neighbourhood N, of = such that f can be extended to N,.
An essential boundary point is one that is not removable. If every boundary
point is essential, we say that X is mawximal.

Let z,ye4(0; 1), the unit disc. We write

r—Y
1—=zy

' = ["D7 ?/].

For z, yeX, we define

1+[f(2), f(y)] ¢
; feH®(X) and f: X 222, 4(0;1);.
1—[f(@),f(®]1’ ’
This defines the Carathéodory metric on X. We say that X is complete
if it is complete with respect to the Carathéodory metric. Necessary and
sufficient conditions under which X is complete are given in [4].

1
d(xz,y) = sup {? log

* Preparation of this paper was supported in part by the National Research
Council Grant No. A8088.
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3. Results. By Theorem 15 of [3], Rudin showed that maximal
regions are precisely those whose boundaries are natural boundaries of
a single-valued bounded analytic function. Since the Carathéodory metric
is defined in terms of bounded analytic functions, it seems reasonable
to conjecture that X is complete if and only if it is maximal. We will
show that this is not the case.

We now show that every complete region must be maximal. We
give two proofs. The first can be generalized to higher dimensions. The
second uses a result of Gamelin and Garnett [1]. It is shorter but does
not immediately generalize. '

THEOREM 1. Let X be a bounded region in the plane. If X is complete,
then X is maximal.

Proof. Suppose X is not maximal. Then, by Theorem 11 of [3],
there is @ unique maximal region X, containing X. Now, X, is the smallest
maximal region containing X. Consider the map 7T': H*(X,) - H*(X)
given by Tf = f|x, f restricted to X. Since X, is the unique maximal
region containing X, the map T is onto. It is, clearly, 1-1 and linear.
Since H*(X,) and H*(X) are Banach spaces, 7' is continuous by the
inverse mapping theorem. Hence there is a constant M with ||f|x,
< M| f|xllx, where |-] denotes the usual supremum norm. Therefore,
every function with ||f|x < 1 extends to a function f on X, with ||f|lx, < M.

We now show that the Gleason part containing X does not equal X.
This proves that X is not complete with respect to d (see [4]).

Let x, be a removable boundary point of X. Then there is a disc
A(xy; 7r), of radius r > 0, with A4(x,,r) =« X,. If ¢ is a homomorphism
of H®(X) with ¢(2) = x,, then ¢(f) = f(z,) for all feH®(X).

We must show there is a point y X such that

S?P{I%(f)l; feH?(X), Iflx <1 and ¢(f) =0} <1 and ¢, (2) =y.
Since all fe H®(X) with ||f|x <1 extend to f on X, with llfllxl < M,

1 (2)] < i:[— le —x, for zeA(wy;7) and f(z,) = 0.

Consider the disc 4(x,; r,), where r;, M /r < }. Let ye 4d(zy; r,)NX. Now
sup{lp, (f)I; feH™(X) and |flx <1} = If(y)] = F (9l

7,

< " | | < < 1
~ r y wo 3 2 .
Hence ¢ is equivalent to ¢,. Consequently, X is not complete as X
is not a Gleason part.
We now give a second proof based on Theorem 3.1 of [1].
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Proof. By Theorem 5 of [3], # i8 a removable boundary point of X
if and only if A(x; r)nX is a Painlevé null set for some r > 0, where X
denotes the complement of X, and 4 the closure of the dise. It is known
that this is true if and only if y(Xn A(x;7)) = 0, where y represents
the analytic capacity.

Let

B, () = {w; 27" ' < lg—ax| < 27"}

Then E,(x)nX = XnA(x;r) for all large enough n. By the Main
Theorem of [4] and Theorem 3.1 of [1], if X is complete, then, for every
boundary point z,

22" y(Ba(@) N X)= oo.
n=1

Therefore, y(f N d(x;7)) > 0 and hence # is not removable. Con-
sequently, all boundary points are essential and X is maximal.

Theorem 14 of [3] states:

Let # be an essential boundary point of X. Then there is an fe H*(X)
whose cluster set at x consists of the entire closed unit dise, although
If(2)] <1 for every zelX.

We now give an analogous characterization of complete regions. In
this case the cluster set at every boundary point will consist of exactly
one point.

THEOREM 2. A bounded region X is complete if and only if, for each
boundary point xz, there is an fe H®(X) such that |f|| <1, |f(2)] <1 for
zeX, and f extends to be continuous on XU {x} with f(x) = 1.

Proof. We assume, first, that such an f exists.

Suppose {z,} is Cauchy with respect to d. Since d is equivalent to
the ordinary metric, in order to show that {x,} converges with respect
to d, it suffices to show that {xz,} is contained in a compact subset of X.

Suppose this is not true. Then there is a subsequence {z, } with
Ty, — @, Where x is a boundary point. Since {x,,} is Cauchy, d(z,, , 2, j) <K
for all n;, and n;. In particular, d(=,,, , ) < K. By the assumption, there
exists an f with f(x) =1 and |f(2)] <1 for z¢X. Form

¥ — f__f(wnl)
1—f(x,))f
Clearly, FeH®(X) and |F(w,,)| - 1. Therefore,
1 1+|F(2,,)l
d > _log——
(@ @) > 108 g 0 > o0

This is a. contradiction.
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Conversely, suppose X is complete. Then, by [4], X, is a peak fibre
for each boundary point A. Hence there is a continuous function f on the
maximal ideal space with f(g;) = 1, ¢,eX; and |f(p)| <1 for all ¢¢X,.
Therefore, if f is the pre-image of f, then fe H*(X) and |{f(z)| < 1. Also,
the cluster set of f at 4 is {1}, since f(¢;) = 1 for ¢,¢ X,. Therefore, putting
f(A) =1, we get an f with the desired properties.

This characterization also allows us to show that complete regions
are related to regions in which the boundary points are regular (Dirichlet
problem).

Definition. Suppose X is a bounded region and z, is a boundary
point. Let f be a continuous function on the boundary of X and let u, be
the solution of Dirichlet’s problem via the Perron-Wiener-Brelot method
with boundary values f. If for all such f we have

lim g, (2) = f(=,),

2Ty
zeX

then z, is called a regular boundary point.

We shall use the following theorem proved in [2]:

Let X be a bounded region and let z, be a boundary point. If there
is a positive superharmonic function w in {reX; |v—x, < ¢} for some
e>0 and w(2) >0 as z - x,, then z, is a regular point.

THEOREM 3. If X is complete, then every boundary point is regular.

Proof. Let x, be a boundary point. By Theorem 2, there is a non-
-constant fe H*(X) with |f|l<1 and f(x) >1 as 2 — x,.

Since f is analytic, — |f| is superharmonic. Therefore, 1 — |f| is super-
harmonic in X and 1 — |f(z)| — 0 as ¢ — z,. Hence z, is a regular boundary
point.

Summarizing, we have shown that if X is a complete region, then
it must be maximal and every boundary point must be regular.

In the next section we will give examples to show that the converses
of the theorems above are false. To that end we give the following defi-
nition:

Definition. Let V be an open set in C. We say that x¢dV (bound-
ary of V) is linearly accessible from V if there exists a straight-line
segment in Vu{z} having x as one of its end points.

LEMMA. Let X be a bounded region satisfying Int X = X. Then the

set of linearly accessible points from (X)~ is dense in 0X.

Proof. Since Int X = X, we have 0X = 0X. Therefore, 0X = 07,
where Y = (X) . Hence we need only prove that the linearly accessible
points from Y are dense in 9Y.

Suppose z¢dY and V, is an open set containing x. Let 4(x;r) = V,
and let yed(x;r)nY. Then there is a straight-line segment 1, joining y
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to x in A(x;r). By identifying 1, with [0, 1], we obtain a y,el, with
Y10Y, and y, <tif tel,,N0Y. Hencel, < YU {y,} and y, is linearly
accessible from Y. Since y;¢V,, x is a limit point of linearly accessible
points.

THEOREM 4. Ewery bounded region satisfying IntX = X is max-
imal.

Proof. By [3], every linearly accessible point is essential. Since
the set of essential points is closed, it follows from the Lemma that every
boundary point is essential.

4. Examples. In this section we give examples of (1) a region which
is maximal but not complete, and (2) a region all of whose boundary
points are regular but is not complete.

Examples of the kind to be used have been used elsewhere. For
both examples we use the following notation:

Y = 4(0;1),

4 =U ZI(‘:("n;rn% where A(wz,;7r,) = {=; | — a,| <Tn}’
n=1

1>$1>$2> ...>£l/‘n—>0,

T, +r <1, Tyt <Tp—17y,.

Take X = Y —(AuU{0}) and observe that IntX = X. Hence, by
Theorem 4, X is maximal.

Clearly, every boundary point of X is a peak fibre except, perhaps,
at 0. However, Zalcman showed in [6] that {0} is a peak fibre if
and only if

rﬂ
;—-:oo.
A—J

Ty

—

n=

Therefore, to construct a region which is not complete, we simply
choose {x,} and {r,} such that

[o¢]
T
_ﬂ < 0.
Z x
n=1 "
For example, we choose

3 1
=g BT = 50 Fon
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Clearly, =, +7r, <1, 1>, > 23> ... >0 and

3 . 1 - 3 1
4-2"1 " 100-10"t1 T 4-2® 100-10"’

a7, 1 w1\ 1
%w,, 75 ;(5) 300
Hence X is not complete.
We can also use the same example to give a region whose boundary
consists only of regular points. To show this, we use Wiener’s test: #e0X
is regular if and only if

o]

2 n
_ = w’
—loge,

ri=1

where ¢, = C[XNE,(x)] and C denotes the logarithmic capacity.
Using the same {z,} and {r,} as before, we have

»(XNE,(z) = »(D,),

where D, denotes the line segment

3 1 3 1
gn+1 - 10n+1’ on+l + 10" +! .

Therefore,
1
V[B]>-§Wﬁ and C(B) = y(B), *
where B = XNE,(x). Hence
1 1 ) 1 1
C(B)>? W, 1.6. cn>—§— 10n+1_'

Clearly, ¢, < 1/2". Therefore,

—log2 —(n+1)log10 < loge, < —nlog2,
that is
log2 + (n+1)log10 > —loge, > nlog2.
Therefore,

n n n
< d — = oo.
log2 + (n-+1)log10 —loge, an Z —loge, oo

n=1

Hence 0 is a regular point. This is the second example.
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