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A GAME OF FAIR DIVISION WITH CONTINUUM OF PLAYERS

BY

JERZY LEGUT (WROCLAW)

0. Let X be an object to be divided among n players. The set of players
T is numbered from 1 to n. A partition P =(A4,, A,, ..., A,) of X is a fair
division if player i receiving the part A; is “satisfied” for i =1, 2, ..., n (the
precise mathematical meaning is given below).

A game of fair division with a finite number of players was introduced
by Kuhn [4], nevertheless the problem of fair division has been considered in
the literature since 1946 (cf. [2], [3], [6]-[8].

A generalization of Kuhn’s definition for an arbitrary set of players is
given by the following

DEerINITION 1. The game of fair division is determined by
<X’ 33){a T; '@T’ j" m, {“r}lsT>’

where X is an object to be divided, #y is a o-algebra of subsets of X, and
other symbols are defined as follows:

Tis a set of players and % is a g-algebra of subsets of T; the subsets of
T in 4 are called coalitions.

{4}, 1s a family of probability measures defined on (X, %) such that
for all Ae Ay the function u (4): T— [0, 1] is %Br-measurable; y, is the
individual evaluation of X by the player ¢t.

A is a probability measure defined on (T, %;); it represents the relative
size of a coalition Ce #7.

m is a probability measure defined on (T, #;); it represents the relative
power of a coalition Ce #r. The measure m represents also the least value
acceptable for each coalition. We assume that m is absolutely continuous
with respect to A.

For the game of fair division we define a set function

Ve(+): #x— [0, 1]
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Vo) %MC) [m(A)A@d) if A(C) >0,
0 if 2(C) =

The value V;(A) is an estimation of Ae #x by the coalition Ce #. We say
that Ae By is a fair share of C if V.(A) = m(C).
DEerFINITION 2. A multifunction P: T— &y is called a division of X if
(a) t; # t, implies P(tl)mP(tz) =0
(b) U{P(t): teT} =
(c) Ee %+ implies P(E)egix, where

P(E) = | P()).

1eE

Let £ be the set of all divisions.

DeriNITION 3. A division Pe 2 is called fair (e-fair) for the game
<X’ QL T; QT’ '1’ m, {”‘l}teT) lf

Ve(P(C)) =m(C) (Ve(P(C))=m(C)—¢)

for every coalition Ce %;.

In Section 1 we shall prove the existence of fair division in the finite case
and in Section 2 the theorem on the existence of e-fair division if T is the
interval [0, 1].

1. The finite case: T= {1, 2, ..., n}. We shall show that our criterion for
a division to be fair coincides with the following result of Dubins and
Spanier [2]:

THeoreM 1 ([2]). Let u,, s, ..., 4, be non-atomic probability measures
defined on (X, #Bx) and let m = (m,, m,, ..., m,) be a vector in R" such that m;
>0, ieT, and ) m;=1. Then there is a measurable partition P

ieT
=(A,, Ay, ..., A,) of X such that p;(A;) = m; for all i, jeT

Indeed, without loss of generality, we may assume that m({i}) = m; > 0.
Setting A({i}) = 1/n for each i =1, 2, ..., n, we obtain m < A. The division P
defined by P(i) = A; is measurable and, moreover, for each C < {1, 2, ..., n}
with 4(C) > 0 we have

VC(P(C) Z (P(O)A({i})

ieC

A(C).ezc“’ (L POIALED
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ieC jeC

- 76 ZAWD T m = 2 m©O T A

ieC jeC ieC

40
=36 ™0 =m©).

Hence P is a fair division.

2. The infinite case: T= [0, 1]. Let ¢ be an arbitrary positive number.
We shall show the existence of e-fair division for the game with continuum of
players.

LEMMA. Let py, py, ..., u, be non-atomic non-negative measures defined
on (X, #Bx) such that

(1) (X)—al <¢, a>0,{20, y(X)>0,i=1,2,....n

Assume that ac(0, a). Then there is an Ae By such that
®) i (A) — o] <—

3) | (X —A)—(a—a)| < ——é for alli=1,2,.

Proof. Let us consider measures

1

Vi = m Hi-

It follows from the Lyapunov convexity theorem (see [1] and [5]) that there
exists a set Ae By such that, for all i=1, 2, ..., n, v;(A) = a/a. Then

_HA) _«a
WA= e

Hence
i (A) = i (X)°
a

Multiplying (1) by a/a we get (2), and by (a—a)/a we get (3).
THEOREM 2. Let T be the interval [0, 1] and let %y be the a-algebra of

Borel subsets of [0, 1]. Assume that (X, Byx) is a measurable space. Let {y,}, r
be a family of probability measures defined on (X, #x) such that
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(a) there is a dense set D in T such that p, is non-atomic for each te D,
(b) there is a number M > 0 such that

sup | (A)—ps (A < Mt —s|.

AeRByx

Let A be the Lebesque measure on [0, 1] and let m be a probability measure on
[0, 1] absolutely continuous with respect to A. Then for an arbitrary ¢ >0
there exists a division P, such that

[Ve(P.(C))—m(C)| <&  for all Ce%r.

(Note that (a) and (b) imply that all x4, are non-atomic.)

Proof. Let ¢ > 0 be an arbitrary positive number. Let K () be a finite
subset of D such that

VteT3t'eK(&): [t—t| <&/M.

k—1 k -1
Ek=[7, ?), E2n=[7a IJ,

n=1,2,...,k=1,2,...,2"—1.

We put

It follows from the Lyapunov convexity.theorem that there exists an A} e Ay
such that

w(A)) =m(E}) for all te K (g/4).
Let te T. Then there exists roe K(¢/4) such that |t—t,| < e/4M. By the

assumption (b), for all te T we have

|1 (A1) —m(ED] = |1 (A]) — s (AD] < £/4
and
| (A3)—m(E3)| < ¢/4,
where A} = X—A} and E}=T-E!. If m(E}) =0 or m(E}) =0, we put
A} = O or A} = @, respectively. Assume that m(E}) >0 and m(E}) > 0.
Consider the set K (g/2*) and the divisions
E! =E?0UE? and E}=E}VUE..
By the Lemma we see that for re K (g/2%) the sets A2 (i =1, 2, 3, 4) exist
with the inequalities

2 pay o MED) e -
| (A7) m(Ei)Is—m(E})4 fori=1,2,

m(E}) [
m(E}) 4

|1 (A7) —m(ED)| < for j=3,4, teK (28_4)
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Hence for all te T we have

mE}He ¢
2 _m(E}) < =P fori=1,2
and
mEHe ¢ _
2) _m(E?)| < =242 for j=3,4.

If m(Ejz) =0 for one of j =1, 2, 3,4, we put A} = @. Let us assume that
m(E}) # 0, E} = E} UE},,. Analogously, for teK (/2 there exist A} and
AP, such that

. s m(Ef)E & m(E})
1 (A4D) m(Ek)|<(m(E§)4 16)m(E})
and

m(EE+1)§+M(E3+1)i
m(E}) 4 m(E}) 16

|u,(A,?+,)—m(E,?+ Dl <

Hence for all te T we get

m(E})e m(E}) ¢ e
m(E})4 m(E}) 16 64

I (AR)—m(ED)| <

We continue this procedure putting A; = @ if m(E]) = 0. To every set E} we
assign the set Aje £y such that for all teT

m(Ep) ¢ m(E}) ¢ m(Ey) € €

I (AD —m(ED)| <

m(E,-‘l)é_l+m(E,-22)1_6 B 22
where E{ c E}"' < ... cE/ . Put
m(E)e m(ED e €

ek(n) = m(Eill)Z m(E'22)1_6 o +22".

We shall show that

2"

(4) Y &(n) <e for all neN.
k=1
We have
2" € m(E?) e m(E?Y)
&(n) =~ — 4 ’
kgl ) 4{j:51;:5}}m(E}) 4{,’:51;::5;}"1(155)
+i m(E3) € m(Ej) 4

16, fmeym(ED " 16y p2m(ED T
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L m(E})
22"_2 {j:E;.'cE'l'_ 1} m(E?- l)
€ m!E“ n£
+22n—2 n—1 )+2ﬁ

:jzs;'cs'z';_‘l; m(Ezn-l

€ . €
+2 22

3 € £ n—1
=—+4-4+|—=+ ... +1_6 + ... +2 <e.

22n—2

For every ne N we define a multifunction P,: [0, 1] - %#x by

P,(t) = A; whenever teE;.
We put

P.(t)= () P,(1).

neN

Then for all te Twe have P,(t)e #x. We shall prove that P, is a fair division.
First notice that P, is a division. Moreover, for E; and for all m > n we have

P.(Ey) = P, (Ey) = Ak.

For, let xe P,(E;). There exists toe E; such that, for all me N, xe P,(to).
Hence xe A}. Conversely, let xe Af. Then x belongs to one of the sets A%,
A% 1. Assume that xe A% !,. Continuing this procedure we get k,, for all m

2 n such that xe A7 . Then

xe () Ag, te () Ej #9.

m=2n m=n
Since

N Ag = P,(t) for some teT,
we have xe P,(t) and te Ef . Therefore xe P,(t) < P, (Ej).
We shall show that for all Ce #;

P (C) = U P.(t)e Bx.
teC
Put & ={C < [0, 1]; P,(C)e #x}. Since P, is a partition, X is closed
under the formation of unions and complements. Since ¢ is a g-algebra and
contains the sets E; generating #r, we have #; < X
Let .o/ be the class of sets which are finite unions of the sets Ej:

Cs

VAeof An Ik, ko, ..., ky: A=

i

Ej, m< 2",

1
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We shall prove that |V, (P,(B,))—m(B,)| <& for any B, and B, from .
There exists noe N such that

ml n m2 n
= U Eko and Bz = U Er,O-
j=1 1=1
It is easy to show that for E; we have

(3) |Va, (P.(ED)—m(Ep)| < &(n),
where
[ 1 (P.(E)A(dr) =

Ve, (P.(ED) = | (AR A(dr)

1
l(Bz) A(B)) 5,

and
m(Ep) — e (n) < p (Ap) < m(E)+&(n).

For, integrating all sides of the above inequalities on the set B, with respect
to A and dividing by A(B,) we get (5).

We have
[Va (P.(By)—m(By)] = \ 15y J, (P(B)) Ad) ~m(B)
2"0 my
== 3 | w(P.B))AE)-m(B,)
2 = IEnIO
om0 m2 ™

=|—3Y ¥ [ w(P(E)A(d)—m(By)

mp = j= 15"0

mz m m2 my

1
=|— 5 (P, (E%)A(dt)——
mz lzl JZI 1/2 Osioul ( k )) ( t) 2 'Zl JZI m(Ek

1 S 2/ 1 ;
) (1 o | (AL A(dr) - m(E,J’))

mz =1 j=1 E0
"

1 my my
- Vono(Ax)—m(E,°
N ’le o (A1) = m(E)

1
< — Z Z skj(nO) < £,

mp =y j=1

where the last inequality follows from (<), because m, < 2"°. It is easy to
verify that Vg, ((P.(‘)) is a measure. Then

sup [V, (P.(O)=m(C) = sup [V, (P.(By)-m(By)] <.
CeBT Byiesd
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Hence for every Ce %; we get

(6) Ve, (P.(C)—m(C)| <&

Now we show that for every Fe %, such that A(F) >0 we have
(7) Ve(P.(C)) = m(C)—e.
Let n be any positive number. Then there exists a set E€.o/ such that

A(E=F)

FcE d
c an A(E)

<.

Now

Ve (Pe(C) = - [ 1 (P.(C)) A (D)

l(F)

> 75 UA(PC) A~ | w(P(C)2(an)

A(E—F)
A(E)

=>m(C)—e— =2m(C)—e—n,

and therefore Vi (P,(C)) = m(C)—e¢--n. Since the number 7 is arbitrary, we
have (7).

Let Bes/ and Fe4%; be such that A(F)>0, F<B, Ce%y, and
A(C) > 0. Then

Ve(P.(O) < I (P.(C)) A(d)

1
A(F)3"

_ 4B A(B)
—A(F) (A(B)I (P ‘C’)“"’)) A(F)(m(cm)

where the last inequality follows from (6).
For any positive number ¢ and given C and F we can choose a Be &/
such that

(%—l)(m(C)+s) < E.

Then V¢ (P,(C)) < m(C)+¢+¢. Hence for all C, Fe B¢ such that A(F) >0
and A(C) > 0 we have

Vi (P.(C))—m(C)| < e.

The inequality holds in particular for F = C, which completes the proof.

Remark. Assume that the set of continuous functions {4 (4): A€ %y}
is closed in the space C(T) of continuous functions with the sup-norm. Then
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it is easy to see that for every aec[0Q, 1] there exists a set Ae £ such that
4 (A) = a for all te T. Hence, modifying the above proof (putting ¢ = 0) it is
easy to show that there exists a fair division P such that V.(P(C)) = m(C).
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