A GAME OF FAIR DIVISION WITH CONTINUUM OF PLAYERS

BY

JERZY LEGUT (WROCŁAW)

0. Let X be an object to be divided among n players. The set of players T is numbered from 1 to n. A partition $P = (A_1, A_2, ..., A_n)$ of X is a fair division if player i receiving the part A_i is "satisfied" for i = 1, 2, ..., n (the precise mathematical meaning is given below).

A game of fair division with a finite number of players was introduced by Kuhn [4], nevertheless the problem of fair division has been considered in the literature since 1946 (cf. [2], [3], [6]–[8]).

A generalization of Kuhn's definition for an arbitrary set of players is given by the following

DEFINITION 1. The game of fair division is determined by

$$\langle X, \mathcal{B}_X, T, \mathcal{B}_T, \lambda, m, \{\mu_t\}_{t \in T} \rangle$$

where X is an object to be divided, \mathcal{B}_X is a σ -algebra of subsets of X, and other symbols are defined as follows:

T is a set of players and \mathscr{B}_T is a σ -algebra of subsets of T; the subsets of T in \mathscr{B}_T are called *coalitions*.

 $\{\mu_t\}_{t\in T}$ is a family of probability measures defined on (X, \mathcal{B}_X) such that for all $A \in \mathcal{B}_X$ the function $\mu_{\cdot}(A)$: $T \to [0, 1]$ is \mathcal{B}_T -measurable; μ_t is the individual evaluation of X by the player t.

 λ is a probability measure defined on (T, \mathcal{B}_T) ; it represents the relative size of a coalition $C \in \mathcal{B}_T$.

m is a probability measure defined on (T, \mathcal{B}_T) ; it represents the relative power of a coalition $C \in \mathcal{B}_T$. The measure m represents also the least value acceptable for each coalition. We assume that m is absolutely continuous with respect to λ .

For the game of fair division we define a set function

$$V_C(\cdot)$$
: $\mathscr{B}_X \to [0, 1]$

by

$$V_C(A) = \begin{cases} \frac{1}{\lambda(C)} \int_C \mu_t(A) \lambda(dt) & \text{if } \lambda(C) > 0, \\ 0 & \text{if } \lambda(C) = 0. \end{cases}$$

The value $V_C(A)$ is an estimation of $A \in \mathcal{B}_X$ by the coalition $C \in \mathcal{B}_T$. We say that $A \in \mathcal{B}_X$ is a *fair share* of C if $V_C(A) \ge m(C)$.

DEFINITION 2. A multifunction $P: T \rightarrow \mathcal{B}_X$ is called a division of X if

- (a) $t_1 \neq t_2$ implies $P(t_1) \cap P(t_2) = \emptyset$,
- (b) $\bigcup \{P(t): t \in T\} = X$,
- (c) $E \in \mathcal{B}_T$ implies $P(E) \in \mathcal{B}_X$, where

$$P(E) = \bigcup_{t \in E} P(t).$$

Let \mathcal{P} be the set of all divisions.

DEFINITION 3. A division $P \in \mathcal{P}$ is called *fair* (ε -fair) for the game $\langle X, \mathcal{B}_X, T, \mathcal{B}_T, \lambda, m, \{\mu_t\}_{t \in T} \rangle$ if

$$V_C(P(C)) \geqslant m(C) \quad (V_C(P(C)) \geqslant m(C) - \varepsilon)$$

for every coalition $C \in \mathcal{B}_T$.

In Section 1 we shall prove the existence of fair division in the finite case and in Section 2 the theorem on the existence of ε -fair division if T is the interval [0, 1].

1. The finite case: $T = \{1, 2, ..., n\}$. We shall show that our criterion for a division to be fair coincides with the following result of Dubins and Spanier [2]:

THEOREM 1 ([2]). Let $\mu_1, \mu_2, ..., \mu_n$ be non-atomic probability measures defined on (X, \mathcal{B}_X) and let $m = (m_1, m_2, ..., m_n)$ be a vector in \mathbb{R}^n such that $m_i \ge 0$, $i \in T$, and $\sum_{i \in T} m_i = 1$. Then there is a measurable partition $P = (A_1, A_2, ..., A_n)$ of X such that $\mu_i(A_j) = m_j$ for all $i, j \in T$.

Indeed, without loss of generality, we may assume that $m(\{i\}) = m_i > 0$. Setting $\lambda(\{i\}) = 1/n$ for each i = 1, 2, ..., n, we obtain $m \le \lambda$. The division P defined by $P(i) = A_i$ is measurable and, moreover, for each $C \subset \{1, 2, ..., n\}$ with $\lambda(C) > 0$ we have

$$V_{C}(P(C)) = \frac{1}{\lambda(C)} \sum_{i \in C} \mu_{i}(P(C)) \lambda(\{i\})$$
$$= \frac{1}{\lambda(C)} \sum_{i \in C} \mu_{i}(\bigcup_{i \in C} P(i)) \lambda(\{i\})$$

$$= \frac{1}{\lambda(C)} \sum_{i \in C} \sum_{j \in C} \mu_i(A_j) \lambda(\{i\})$$

$$= \frac{1}{\lambda(C)} \sum_{i \in C} \lambda(\{i\}) \sum_{j \in C} m_j = \frac{1}{\lambda(C)} m(C) \sum_{i \in C} \lambda(\{i\})$$

$$= \frac{\lambda(C)}{\lambda(C)} m(C) = m(C).$$

Hence P is a fair division.

2. The infinite case: T = [0, 1]. Let ε be an arbitrary positive number. We shall show the existence of ε -fair division for the game with continuum of players.

LEMMA. Let $\mu_1, \mu_2, ..., \mu_n$ be non-atomic non-negative measures defined on (X, \mathcal{B}_X) such that

(1)
$$|\mu_i(X) - a| \le \xi$$
, $a > 0$, $\xi \ge 0$, $\mu_i(X) > 0$, $i = 1, 2, ..., n$.

Assume that $\alpha \in (0, a)$. Then there is an $A \in \mathcal{B}_X$ such that

$$|\mu_i(A) - \alpha| \leqslant \frac{\alpha}{a} \xi,$$

Proof. Let us consider measures

$$v_i = \frac{1}{\mu_i(X)} \mu_i.$$

It follows from the Lyapunov convexity theorem (see [1] and [5]) that there exists a set $A \in \mathcal{B}_X$ such that, for all i = 1, 2, ..., n, $v_i(A) = \alpha/a$. Then

$$v_i(A) = \frac{\mu_i(A)}{\mu_i(X)} = \frac{\alpha}{a}.$$

Hence

$$\mu_i(A) = \mu_i(X) \frac{\alpha}{a}.$$

Multiplying (1) by α/a we get (2), and by $(a-\alpha)/a$ we get (3).

THEOREM 2. Let T be the interval [0, 1] and let \mathscr{B}_T be the σ -algebra of Borel subsets of [0, 1]. Assume that (X, \mathscr{B}_X) is a measurable space. Let $\{\mu_i\}_{i \in T}$ be a family of probability measures defined on (X, \mathscr{B}_X) such that

- (a) there is a dense set D in T such that μ_t is non-atomic for each $t \in D$,
- (b) there is a number M > 0 such that

$$\sup_{A\in\mathscr{B}_X}|\mu_t(A)-\mu_s(A)|\leqslant M|t-s|.$$

Let λ be the Lebesgue measure on [0, 1] and let m be a probability measure on [0, 1] absolutely continuous with respect to λ . Then for an arbitrary $\varepsilon > 0$ there exists a division P_{ε} such that

$$|V_C(P_{\varepsilon}(C)) - m(C)| \leq \varepsilon$$
 for all $C \in \mathcal{B}_T$.

(Note that (a) and (b) imply that all μ_i are non-atomic.)

Proof. Let $\varepsilon > 0$ be an arbitrary positive number. Let $K(\xi)$ be a finite subset of D such that

$$\forall t \in T \ \exists \ t' \in K(\xi): \ |t - t'| < \xi/M.$$

We put

$$E_k^n = \left[\frac{k-1}{2^n}, \frac{k}{2^n}\right), \quad E_{2^n}^n = \left[\frac{2^n - 1}{2^n}, 1\right],$$

$$n = 1, 2, \dots, k = 1, 2, \dots, 2^n - 1.$$

It follows from the Lyapunov convexity theorem that there exists an $A_1^1 \in \mathcal{B}_X$ such that

$$\mu_t(A_1^1) = m(E_1^1)$$
 for all $t \in K(\varepsilon/4)$.

Let $t \in T$. Then there exists $t_0 \in K(\varepsilon/4)$ such that $|t - t_0| \le e/4M$. By the assumption (b), for all $t \in T$ we have

$$|\mu_{t}(A_{1}^{1}) - m(E_{1}^{1})| = |\mu_{t}(A_{1}^{1}) - \mu_{t_{0}}(A_{1}^{1})| \leq \varepsilon/4$$

and

$$|\mu_{\epsilon}(A_2^1)-m(E_2^1)| \leq \varepsilon/4,$$

where $A_2^1 = X - A_1^1$ and $E_2^1 = T - E_1^1$. If $m(E_2^1) = 0$ or $m(E_1^1) = 0$, we put $A_2^1 = \emptyset$ or $A_1^1 = \emptyset$, respectively. Assume that $m(E_1^1) > 0$ and $m(E_2^1) > 0$. Consider the set $K(\varepsilon/2^4)$ and the divisions

$$E_1^1 = E_1^2 \odot E_2^2$$
 and $E_2^1 = E_3^2 \odot E_4^2$.

By the Lemma we see that for $t \in K(\varepsilon/2^4)$ the sets A_i^2 (i = 1, 2, 3, 4) exist with the inequalities

$$|\mu_i(A_i^2) - m(E_i^2)| \le \frac{m(E_i^2)}{m(E_1^1)} \frac{\varepsilon}{4}$$
 for $i = 1, 2,$

$$|\mu_t(A_j^2) - m(E_j^2)| \leqslant \frac{m(E_j^2)}{m(E_j^2)} \frac{\varepsilon}{4} \quad \text{for } j = 3, 4, \ t \in K\left(\frac{\varepsilon}{2^4}\right).$$

Hence for all $t \in T$ we have

$$|\mu_i(A_i^2) - m(E_i^2)| \le \frac{m(E_i^2)}{m(E_1^1)} \frac{\varepsilon}{4} + \frac{\varepsilon}{16}$$
 for $i = 1, 2$

and

$$|\mu_t(A_j^2) - m(E_j^2)| \le \frac{m(E_j^2)}{m(E_j^2)} \frac{\varepsilon}{4} + \frac{\varepsilon}{16}$$
 for $j = 3, 4$.

If $m(E_j^2) = 0$ for one of j = 1, 2, 3, 4, we put $A_j^2 = \emptyset$. Let us assume that $m(E_j^2) \neq 0$, $E_j^2 = E_k^3 \cup E_{k+1}^3$. Analogously, for $t \in K(\varepsilon/2^6)$ there exist A_k^3 and A_{k+1}^3 such that

$$|\mu_{t}(A_{k}^{3}) - m(E_{k}^{3})| \leqslant \left(\frac{m(E_{j}^{2})}{m(E_{1}^{1})} \frac{\varepsilon}{4} + \frac{\varepsilon}{16}\right) \frac{m(E_{k}^{3})}{m(E_{j}^{2})}$$

and

$$|\mu_{t}(A_{k+1}^{3}) - m(E_{k+1}^{3})| \leq \frac{m(E_{k+1}^{3})}{m(E_{1}^{1})} \frac{\varepsilon}{4} + \frac{m(E_{k+1}^{3})}{m(E_{j}^{2})} \frac{\varepsilon}{16}.$$

Hence for all $t \in T$ we get

$$|\mu_t(A_k^3) - m(E_k^3)| \le \frac{m(E_k^3)}{m(E_1^1)} \frac{\varepsilon}{4} + \frac{m(E_k^3)}{m(E_i^2)} \frac{\varepsilon}{16} + \frac{\varepsilon}{64}.$$

We continue this procedure putting $A_k^n = \emptyset$ if $m(E_k^n) = 0$. To every set E_k^n we assign the set $A_k^n \in \mathcal{B}_X$ such that for all $t \in T$

$$|\mu_{t}(A_{k}^{n})-m(E_{k}^{n})| \leq \frac{m(E_{k}^{n})}{m(E_{i_{1}}^{1})} \frac{\varepsilon}{4} + \frac{m(E_{k}^{n})}{m(E_{i_{2}}^{2})} \frac{\varepsilon}{16} + \ldots + \frac{m(E_{k}^{n})}{m(E_{i_{n-1}}^{n-1})} \frac{\varepsilon}{2^{2n-2}} + \frac{\varepsilon}{2^{2n}},$$

where $E_k^n \subset E_{i_{n-1}}^{n-1} \subset \ldots \subset E_{i_1}^1$. Put

$$\varepsilon_k(n) = \frac{m(E_k^n)}{m(E_{i_1}^1)} \frac{\varepsilon}{4} + \frac{m(E_k^n)}{m(E_{i_2}^2)} \frac{\varepsilon}{16} + \ldots + \frac{\varepsilon}{2^{2n}}.$$

We shall show that

(4)
$$\sum_{k=1}^{2^n} \varepsilon_k(n) < \varepsilon \quad \text{for all } n \in \mathbb{N}.$$

We have

$$\sum_{k=1}^{2^{n}} \varepsilon_{k}(n) = \frac{\varepsilon}{4} \sum_{\{j: E_{j}^{n} \subset E_{1}^{1}\}} \frac{m(E_{j}^{n})}{m(E_{1}^{1})} + \frac{\varepsilon}{4} \sum_{\{j: E_{j}^{n} \subset E_{2}^{1}\}} \frac{m(E_{j}^{n})}{m(E_{2}^{1})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{2})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{2}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{n}\}} \frac{m(E_{j}^{n})}{m(E_{4}^{n})} + \dots + \frac{\varepsilon}{16} \sum_{\{j: E_{j}^{n} \subset E_{4}^{n}\}} \frac{m(E_{$$

$$+\frac{\varepsilon}{2^{2n-2}} \sum_{\{j: E_{j}^{n} \subset E_{1}^{n-1}\}} \frac{m(E_{j}^{n})}{m(E_{1}^{n-1})} + \dots$$

$$+\frac{\varepsilon}{2^{2n-2}} \sum_{\{j: E_{j}^{n} \subset E_{2n-1}^{n-1}\}} \frac{m(E_{j}^{n})}{m(E_{2n-1}^{n-1})} + 2^{n} \frac{\varepsilon}{2^{2n}}$$

$$= \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \left(\frac{\varepsilon}{16} + \dots + \frac{\varepsilon}{16}\right) + \dots + 2^{n-1} \frac{\varepsilon}{2^{2n-2}} + 2^{n} \frac{\varepsilon}{2^{2n}} < \varepsilon.$$

For every $n \in N$ we define a multifunction P_n : $[0, 1] \to \mathcal{B}_X$ by

$$P_n(t) = A_k^n$$
 whenever $t \in E_k^n$.

We put

$$P_{\varepsilon}(t) = \bigcap_{n \in N} P_n(t).$$

Then for all $t \in T$ we have $P_{\varepsilon}(t) \in \mathcal{B}_X$. We shall prove that P_{ε} is a fair division. First notice that P_{ε} is a division. Moreover, for E_k^n and for all $m \ge n$ we have

$$P_{\varepsilon}(E_k^n) = P_m(E_k^n) = A_k^n.$$

For, let $x \in P_{\varepsilon}(E_k^n)$. There exists $t_0 \in E_k^n$ such that, for all $m \in \mathbb{N}$, $x \in P_m(t_0)$. Hence $x \in A_k^n$. Conversely, let $x \in A_k^n$. Then x belongs to one of the sets A_{2k-1}^{n+1} , A_{2k}^{n+1} . Assume that $x \in A_{2k-1}^{n+1}$. Continuing this procedure we get k_m for all $m \ge n$ such that $x \in A_{k_m}^m$. Then

$$x \in \bigcap_{m \ge n} A_{k_m}^m, \quad t \in \bigcap_{m \ge n} E_{k_m}^n \neq \emptyset.$$

Since

$$\bigcap_{m \ge n} A_{k_m}^m = P_{\varepsilon}(t) \quad \text{for some } t \in T,$$

we have $x \in P_{\varepsilon}(t)$ and $t \in E_{k_m}^m$. Therefore $x \in P_{\varepsilon}(t) \subset P_{\varepsilon}(E_k^n)$.

We shall show that for all $C \in \mathcal{B}_T$

$$P_{\varepsilon}(C) = \bigcup_{t \in C} P_{\varepsilon}(t) \in \mathscr{B}_{X}.$$

Put $\mathscr{K} = \{C \subset [0, 1]; P_{\varepsilon}(C) \in \mathscr{B}_X\}$. Since P_{ε} is a partition, \mathscr{K} is closed under the formation of unions and complements. Since \mathscr{K} is a σ -algebra and contains the sets E_k^n generating \mathscr{B}_T , we have $\mathscr{B}_T \subset \mathscr{K}$.

Let \mathscr{A} be the class of sets which are finite unions of the sets E_k^n :

$$\forall A \in \mathscr{A} \exists n \exists k_1, k_2, \dots, k_m : A = \bigcup_{i=1}^m E_{k_i}^n, m \leq 2^n.$$

We shall prove that $|V_{B_2}(P_{\varepsilon}(B_1)) - m(B_1)| \le \varepsilon$ for any B_1 and B_2 from \mathscr{A} . There exists $n_0 \in N$ such that

$$B_1 = \bigcup_{j=1}^{m_1} E_{k_j}^{n_0}$$
 and $B_2 = \bigcup_{l=1}^{m_2} E_{r_l}^{n_0}$.

It is easy to show that for E_k^n we have

$$\left|V_{B_2}\left(P_{\varepsilon}(E_k^n)\right) - m(E_k^n)\right| \leqslant \varepsilon_k(n),$$

where

$$V_{B_2}(P_{\varepsilon}(E_k^n)) = \frac{1}{\lambda(B_2)} \int_{B_2} \mu_t(P_{\varepsilon}(E_k^n)) \lambda(dt) = \frac{1}{\lambda(B_2)} \int_{B_2} \mu_t(A_k^n) \lambda(dt)$$

and

$$m(E_k^n) - \varepsilon_k(n) \leqslant \mu_t(A_k^n) \leqslant m(E_k^n) + \varepsilon_k(n).$$

For, integrating all sides of the above inequalities on the set B_2 with respect to λ and dividing by $\lambda(B_2)$ we get (5).

We have

$$\begin{split} \left| V_{B_{2}} \left(P_{\varepsilon}(B_{1}) \right) - m(B_{1}) \right| &= \left| \frac{1}{\lambda(B_{2})} \int_{B_{2}} \mu_{t} \left(P_{\varepsilon}(B_{1}) \right) \lambda(dt) - m(B_{1}) \right| \\ &= \left| \frac{2^{n_{0}}}{m_{2}} \sum_{l=1}^{m_{2}} \int_{E_{r_{l}}^{n_{0}}} \mu_{t} \left(P_{\varepsilon}(B_{1}) \right) \lambda(dt) - m(B_{1}) \right| \\ &= \left| \frac{2^{n_{0}}}{m_{2}} \sum_{l=1}^{m_{2}} \sum_{j=1}^{m_{1}} \int_{E_{r_{l}}^{n_{0}}} \mu_{t} \left(P_{\varepsilon}(E_{k_{j}}^{n_{0}}) \right) \lambda(dt) - m(B_{1}) \right| \\ &= \left| \frac{1}{m_{2}} \sum_{l=1}^{m_{2}} \sum_{j=1}^{m_{1}} \frac{1}{1/2^{n_{0}}} \int_{E_{r_{l}}^{n_{0}}} \mu_{t} \left(P_{\varepsilon}(E_{k_{j}}^{n_{0}}) \right) \lambda(dt) - \frac{1}{m_{2}} \sum_{l=1}^{m_{2}} \sum_{j=1}^{m_{1}} m(E_{k_{j}}^{n_{0}}) \right| \\ &= \left| \frac{1}{m_{2}} \sum_{l=1}^{m_{2}} \sum_{j=1}^{m_{1}} \left(\frac{1}{1/2^{n_{0}}} \int_{E_{r_{l}}^{n_{0}}} \mu_{t} \left(A_{k_{j}}^{n_{0}} \right) \lambda(dt) - m(E_{k_{j}}^{n_{0}}) \right) \right| \\ &\leq \frac{1}{m_{2}} \sum_{l=1}^{m_{2}} \sum_{j=1}^{m_{1}} \left| V_{E_{r_{l}}^{n_{0}}} \left(A_{k_{j}}^{n_{0}} \right) - m(E_{k_{j}}^{n_{0}}) \right| \\ &\leq \frac{1}{m_{2}} \sum_{l=1}^{m_{2}} \sum_{j=1}^{m_{1}} \sum_{i=1}^{m_{1}} \varepsilon_{k_{j}} (n_{0}) \leq \varepsilon, \end{split}$$

where the last inequality follows from (4), because $m_1 \leq 2^{n_0}$. It is easy to verify that $V_{B_2}((P_{\varepsilon}(\cdot)))$ is a measure. Then

$$\sup_{C\in\mathscr{B}_T} \left| V_{B_2} \big(P_{\varepsilon}(C) \big) - m(C) \right| = \sup_{B_1\in\mathscr{A}} \left| V_{B_2} \big(P_{\varepsilon}(B_1) \big) - m(B_1) \right| \leqslant \varepsilon.$$

Hence for every $C \in \mathcal{B}_T$ we get

(6)
$$|V_{B_2}(P_{\varepsilon}(C)) - m(C)| \leq \varepsilon.$$

Now we show that for every $F \in \mathcal{B}_T$ such that $\lambda(F) > 0$ we have

(7)
$$V_F(P_{\varepsilon}(C)) \geqslant m(C) - \varepsilon.$$

Let η be any positive number. Then there exists a set $E \in \mathscr{A}$ such that

$$F \subset E$$
 and $\frac{\lambda(E-F)}{\lambda(E)} < \eta$.

Now

$$V_{F}(P_{\varepsilon}(C)) = \frac{1}{\lambda(F)} \int_{F} \mu_{t}(P_{\varepsilon}(C)) \lambda(dt)$$

$$\geq \frac{1}{\lambda(E)} \left(\int_{E} \mu_{t}(P_{\varepsilon}(C)) \lambda(dt) - \int_{E-F} \mu_{t}(P_{\varepsilon}(C)) \lambda(dt) \right)$$

$$\geq m(C) - \varepsilon - \frac{\lambda(E-F)}{\lambda(E)} \geq m(C) - \varepsilon - \eta,$$

and therefore $V_F(P_{\varepsilon}(C)) \ge m(C) - \varepsilon - \eta$. Since the number η is arbitrary, we have (7).

Let $B \in \mathscr{A}$ and $F \in \mathscr{B}_T$ be such that $\lambda(F) > 0$, $F \subset B$, $C \in \mathscr{B}_T$, and $\lambda(C) > 0$. Then

$$V_{F}(P_{\varepsilon}(C)) \leq \frac{1}{\lambda(F)} \int_{B} \mu_{t}(P_{\varepsilon}(C)) \lambda(dt)$$

$$= \frac{\lambda(B)}{\lambda(F)} \left(\frac{1}{\lambda(B)} \int_{B} \mu_{t}(P_{\varepsilon}(C)) \lambda(dt)\right) \leq \frac{\lambda(B)}{\lambda(F)} (m(C) + \varepsilon),$$

where the last inequality follows from (6).

For any positive number ξ and given C and F we can choose a $B \in \mathscr{A}$ such that

$$\left(\frac{\lambda(B)}{\lambda(F)}-1\right)(m(C)+\varepsilon)<\zeta.$$

Then $V_F(P_{\varepsilon}(C)) \leq m(C) + \varepsilon + \xi$. Hence for all $C, F \in \mathcal{B}_T$ such that $\lambda(F) > 0$ and $\lambda(C) > 0$ we have

$$|V_F(P_{\varepsilon}(C)) - m(C)| \leq \varepsilon.$$

The inequality holds in particular for F = C, which completes the proof.

Remark. Assume that the set of continuous functions $\{\mu_t(A): A \in \mathcal{B}_X\}$ is closed in the space C(T) of continuous functions with the sup-norm. Then

it is easy to see that for every $\alpha \in [0, 1]$ there exists a set $A \in \mathcal{B}_X$ such that $\mu_t(A) = \alpha$ for all $t \in T$. Hence, modifying the above proof (putting $\varepsilon = 0$) it is easy to show that there exists a fair division P such that $V_C(P(C)) = m(C)$.

REFERENCES

- [1] J. Diestel and J. Uhl, Vector Measures, Amer. Math. Soc. Providence, Rhode Island 1977.
- [2] L. E. Dubins and E. H. Spanier, How to cut a cake fairly, Amer. Math. Monthly 68 (1961), pp. 1-17.
- [3] B. Knaster, Sur le problème du partage pragmatique de H. Steinhaus, Ann. Soc. Polon. Math. 19 (1946), pp. 228-230.
- [4] H. W. Kuhn, On Games of Fair Division in: Essays in Modern Math. Economics, ed. Shubik, Princeton 1973.
- [5] A. A. Lyapunov, On completely additive vector functions (in Russian), Izv. Akad. Nauk USSR (1940), pp. 465-478.
- [6] H. Steinhaus, The problem of fair division, Econometrica 16 (1948), pp. 101-104.
- [7] Sur la division pragmatique, ibidem 17 (supp.) (1949), pp. 315-319.
- [8] K. Urbanik, Quelques théorèmes sur les mesures, Fund. Math. 41 (1954), pp. 150-162.

Reçu par la Rédaction le 25. 1. 1983; en version modifiée le 14. 4. 1983