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0. Introduction. The purpose of this paper is to show an application of
theorems on asymptotical stability of a stochastic semigroup in ergodic
theory. ’

In Section 1, a necessary and sufficient condition for asymptotical
stability of a stochastic semigroup of Markov operators on the Banach space
of all finite, countably additive set functions is proved. This condition — the
existence of an upper measure — is equivalent to the existence of a lower
measure [10].

In Section 2, the construction of a stochastic semigroup corresponding
to a semidynamical system is shown and the exactness is arrived at from the
asymptotical stability of this semigroup.

The notion of exactness was introduced by Rokhlin [11], who proved
that it implies ergodicity and mixing of all orders. The discovery that
exactness of a semidynamical system may be characterized by asymptotic
behavior of the corresponding stochastic semigroup is due to Lin [7]. From
his result it follows that the semidynamical system |S"! (of the iterates of
transformation S) with the probability measure m invariant under § is exact
if and only if the stochastic semigroup |P%! is asymptotically stable on L' (m)
(in the sense of [5]) with the stationary density equal to 1. Hence this
condition may be used to verify whether the system with the given measure
is exact. Another weaker condition can be found in [6]. It says that the
asymptotical stability of |P3! on L!(m) (where S is a nonsingular transforma-
tion) implies the existence of a unique absolutely continuous invariant
probability measure with respect to which the system |S"! is exact. Our
proposition is that the asymptotical stability of |P§) (in our sense) implies
the existence of a unique invariant probability measure for which the system
{S"! is exact (such a system will be called uniquely exact).

In Section 3, examples of a uniquely exact system and an exact system
which is not uniquely exact are given.

1. Asymptotical stability of a stochastic semigroup of Markov operators.
Let (X, /) be a measurable space with o-field . Denote by N
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= (N(X, %), || |l) the Banach space of all finite s-additive functions on .o/
equipped with the norm

Ivil = vl (X);
here
V=v*+v-,
vi(A)=v(AnH), v (A)=—-v(AnH) for Ae.o/, veN,
where H, H' is the Hahn decomposition of X for v. The sets
N, = veN: v>20!
of all finite measures on (X, .¢/) and
N,=1veN,: vl =1]
of all probability measures on (X, .&/) play a special role in this paper.
Lemma 1.1. If xeN, and peN,, then
e —oell = lloell = 1+ 2]i(—2) " I
Proof. If H, H' is the Hahn decomposition of X for u—x, then
(n—2%)" (X) = (e — ) (H') = [lll = 1 +|I(—2) "I,

which, by the equality llu—xll=(u—x)'(X)+||(u—x);'||, completes the
proof.

DEerFIniTION 1.1. A linear mapping P: N =N is called a Markov oper-
ator on N iff

(1.1) P(N,) ©N,.
It is easy to see that a linear mapping P is a Markov operator on N iff
(1.1a) PveN, and ||P.v|| =|lv|| for all veN,.
Every Markov operator on N has the following properties:
(1.2) Pvi < Pv, for v, <v,, v{,v,€N,
(1.3) (Pv)* < Pv*, (Pv) < I;v' for veN,
(1.4) Pv=v=Py* =v* and Pv- =v~ for veN,
(L.5) |Pv| < Plv|, |IPv||<|]v]] for veN,

(1.6) P is uniformly continuous.

DEeFINITION 1.2. A family {P: t €T} of Markov operators on N, where T
is‘a semigroup of real positive numbers (ie., @ # T < (0, ), t,+t, €T for
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ty. t- ¢ T) is called a stochastic semigroup on N iff
(1.7) P12 =P1oP? fort, t,eT

DeriniTiON 1.3. A stochastic semigroup |P': teT! is called asymptoti-
cally stable iff there exists a unique probability measure u° such that

(1.8) lim PPu=u® for every ueNn,.
t *x
DeriNITION 1.4. A probability measure u° is called a stationary probabil-
ity measure for a stochastic semigroup {P': teT) iff
(1.9 Pu®=yu° for all teT.

ProrosiTiON 1.1. Every asymptotically stable stochastic semigroup has a
unique stationary probability measure.

Proof. Condition (1.8) implies, according to (1.6), that
P(Puy—-P @) ast-ow
and, according to (1.1), that
P‘(P"u) -n® ast-ow

for all ' €T and peN,. Hence P (u° = p° for all ' €T. Assume that ' is
also a stationary probability measure. Then

lu' =l = 1P ' =% -0 as t —> o0,

which implies that p! = u°.
Remark 1.1. Property (1.4) implies that the stationary probability mea-
sure for an asymptotically stable stochastic semigroup is a unique (up to the

sign) fixed point in the set {veN: |v|| =1} of all operators from this
semigroup (see [10]).

DEeFINITION 1.5. A measure x €N, is called an E-upper measure (E < N)
for a semigroup {P': teT} iff ||| <2 and

(1.10) lim ||(PPv—3x%)*|| =0 for all veE.

| S &

Denote by Kf = KE(P': teT) the set of all E-upper measures for the
semigroup P: teT}.
Remark 1.2 If x(—:K""(P‘: teT), then |x|]| = 1. If
xeK"P(P': teT) AN,
then x is a unique stationary probability measure for the semigroup
P teT).
The main result of this paper will be proved under the assumption that
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T is a semigroup such that
(1.11) t,—t,eT fort, >t,, t;,t,€T.

LemMAa 1.2. For every stochastic semigroup \P': te€T!| and every veN
the function t —||P'v|| is decreasing.

THEOREM 1.1. A stochastic semigroup \P‘: teT) is asymptotically stable
if and only if the set KN"(P': teT) is nonempty (i.e., if there exists an N ,-
upper measure for this semigroup).

Proof. The “only if” part is obvious because the stationary probability
measure of the semigroup is an N,-upper measure for it.

The proof of the “if” part will be done in three steps.

First, we are going to show that

(1.12) lim [P (uy —p)ll =0 for py, p2 EN,.

t—o
Fix two arbitrary probability measures u; and p,. For v = u; —u, we have
Iv* i = vl = ZIvll =:c,

because
VX)) =T (X) =v(X) = (X)—p(X)=0 and |V =v"(X)+v (X).
Assume for a moment that ¢ >0 and x'eK}N’. Then
1P| = c||(P'(v+/c)—x)—(P'(v'/c)'—x)"
< c(IlP'(v* /)=l + 1P (v™/c) —xll).

Since the measures v*/c and v~/c belong to N, there exists, according to
(1.10), a t, €T such that for t > ¢,

(PP /) =) || < @=lixly4, (P /e)—x)"|| < 2—Iixll)/4.
Therefore, by Lemma 1.1 and (1.1),
WPV < VIl Ibel/2  for > ¢,.

For ¢ = ||v||//2 = O this inequality is obvious because P is linear. Finally, for
any p,, p, €N, we have

1Pt (g — p)ll < Mty — ol el 2.

In the same way we can find a time ¢, € T such that
P2 (g = po)ll S P g = P2 ol loel/2 <l = peall (1l /2%,
because P* preserves the norm on N,. After n steps we obtain

NPT g — )l < g — el (l11/2)",
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where t,, ..., t, are suitably chosen elements from T. Now, putting 7, =t,
+...+t,, we have, by ||x|| < 2,

lim [|P™ (s — o)l = O.

n—o

This implies, according to Lemma 1.2, that (1.12) holds.
In the second step we shall construct the least N,-upper measure for our

. . . N
stochastic semigroup. First observe that »x; A x, eK"? for all x,, %, €K P In
fact, if H, H' denotes the Hahn decomposition for »x, —x,, then

(P =y Axx)¥ll = (P pu—xy Axa)® (H)+(P' pu—x, Axy)t (H)
= (P p—3x;)* (H)+(P' p—3x,)* (H)
S P p=3y) TN+ II(P* pp—=3¢2) " |l

Write K = inf }||x||: xeKNP}. We can choose a sequence ;x,} of N,-upper
measures such that x, — K. Replacing, if necessary, \x,] by a sequence |x,|
defined by

_xl‘:f’ xn+1=xn,\in+lo neN,

we get a decreasing sequence of N,-upper measures such that
x,(X) 2K €[l, 2).

Since ||%,—%,|| = #,(X)—%,(X) <& for m>=n = ny(e), there exists x°eN
such that ||x,—x°| —=0. Thus x, =x° uniformly on ./, which implies that
x°€eN, and |j»°| = K <2. To show that »° is an N,-upper measure it is
enough to check that

(P =) * I < P =) Il + l1oe — 2l

forallteTand neN. Let ueN,, neN and let Hy, H; and H,, H, denote the
Hahn decompositions of X for u—x° and u—s,, respectively. Then

(s =) *1I = (u—2°) (Ho) = (n—2,) (Ho) + (3¢, —%°) (Ho)
< (=) (Ho N H,) +|lx,—
< (=) (H,) ey — 2l = 11— 5¢) " 1| + Il — 2.

Finally, x° is the least element in K" because it is a minimal element in K",

and K"? is closed with respect to minimum.
In the last step we prove the asymptotical stability of our stochastic

semigroup. First, observe that for every t'eT and x €K™ also P*xeK". In
fact, according to (1.11), (1.7), (1.3) and (1.1a), for t > ¢' and ueN, we have

(P = P s * || = (P (P e=30) |
<P (P =)t = (P —x)*]].
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This means that P*x° > »° for t € T. Moreover, P*x° = x°, for if not, then
there exists a set Ae./ such that P'x°(4) > x°(4) and we have
[|P* %% > ||°||, which contradicts (1.1a). Thus u° = x%%||x°|| is a probability
measure satisfying (1.9). Now, according to (1.12), we have

WP pu—p®ll = |1P(u—pO)ll >0 as t >0 for ueN,.

This completes the proof.
Remark 1.3. Assumption (1.11) in Theorem 1.1 may be replaced by

(1.13)  the function t —||P'(u, — p,)|| is decreasing for all u,, p,eN,.

In fact, by Theorem 1.1 for an arbitrary s € T the semigroup {P™: neN}
is asymptotically stable because for the semigroup ins: neN! the condition
(1.11) holds. If u, is the stationary probability measure for P°, then for a
fixed reT

1P o — poll = 1P (P™ po) — poll = IIP™ (P po) — poll =0 as n — oo,
which implies P'uo = po. Now, by (1.13), for arbitrary ueN, we have
im || P p— poll = lim ||P™ (u— po)l| = 0.

t—x n—+x

Remark 1.4. Assumption (1.11) is essential in Lemma 1.2 and Theorem
1.1, and assumption (1.13) is essential in Remark 1.3 as the following example
shows:

ExampLe 1.1. Let X = {a, b} and o =2*. For veN(X, &) we have
v =ud,+vd,, where u,veR and ||v|| = |uj+|t].
The operator = on N given by
T (ud, + v8,) = (u+(v/2)),+(v/2) 5,
is a Markov operator such that for p, >0, p+q=1 and neN
7" (pSa+q0,) = (p+(1=1/2)q)8,+(4/2) 8y < 8,+(1/2) 3.

Consequently, 6,+(1/2)d, is an N,-upper measure for the stochastic semi-
group {n": neN} which is asymptotically stable with the stationary probabil-
ity measure J,. Let £€(0, 1)\ Q. The set

k+le: keN, leil, ..., k}}

is a semigroup of real positive numbers for which (1.11) does not hold.
Writing P**% =n! for keN, I=1, ..., k, we get the stochastic semigroup
P*: teT) such that §,+(1/2)6, is an N,-upper measure for it, (1.13) does
not hold (because ||P** 2¢(6,—J,)|l = 1/2 and ||P**%(5,—4,)|| = 1 for all k = 2)
and it is not asymptotically stable (because ||P"*¢(6,—3,)|| = 1 for all neN).
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Now, denote by { ) the convex closed hull, i, for E — N,

Ey={Y qum: Y ou=1,0>0 yeE k=1,...,m; meN}
' k=1 k=1

ProrosiTioN 1.2. If (E) = N, then the conditions
(@) xeKE(P: teT),
(b) xeK"P(P: teT)

are equivalent.

Remark 1.5. The assumption of the existence of an N,-upper measure
in Theorem 1.1 may be replaced by the assumption of the existence of an N -
lower measure [10]. In that paper one may also find a proof of the analog of
Proposition 1.2 for lower measures and a proof of the fact that the
asymptotical stability of the subsemigroup {P™: neN! for some s € T implies
the asymptotical stability of {P*: t € T}, which will be used below.

2. Exactness. Let (X, o) be a measurable space. A transformation S: X
— X is called double measurable iff S(A)eof and S~ (A)eof for all Ae.
A family {S,: t €T} of double measurable transformations is called a semidy-
namical system iff

(2.1) St1+12 =S

where T is a semigroup of real positive numbers. A measure u° €N is called
invariant under |S,: teT) iff

(2.2 u°(S;1(A)) = u®(4) for all Ae/ and teT

oS for t,,t,€T,

L5 2

Every semidynamical system {S,: t €T} determines by the formula
(2.3) Psv(A) =v(S;'(4)) for Ae and teT

a stochastic semigroup P§: t € T) of Markov operators on N, which has the
following properties:

(i) if ueN, is concentrated on A4 €.&/, then Pgpu is concentrated on
S, (4); _

(i) ueN, is invariant under {S,: t €T} if and only if u is a fixed point
of all operators from {P§: teT}.

A semidynamical system {S,: teT} is u®-exact ([11], [5]) iff p’ is a
‘probability measure on (X, /), invariant under {S,: t €T} and such that

(24) lim u°(S,(4)) =1 for all Aes/ such that u°(4) > 0.
| Sindie &
DerFiNITION 2.1. A semidynamical system .S,: teT! is called uniquely
exact iff there exists a unique probability measure u° such that the system
{S,: teT} is u®-exact.
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Unique exactness implies exactness.

ProrosiTiON 2.1. If {S,: teT} is a semidynamical system such that the
carresponding stochastic semigroup |P5: t€T! is asymptotically stable, then
\S,: teT) is uniquely exact.

Proof. Let u° be the unique stationary probability measure for the
semigroup |P§: teT!. By (ii), u° is the unique probability measure invariant
under !S,: t €T!. For the proof of (24) fix A €./ such that u°(4).> 0. Since

ui = u°(-|4) eN,,
by (i) we have
0.< 1—40(S,(4)) < 1Py 43— 1| (S, (4)) < 1P p— Ol

and, consequently, u°(S,(4)) -1 as t = 0.

From Theorem 1.1, Proposition 1.2, Remark 1.5, Proposition 2.1 and
the property of upper variation we obtain immediately (under the assump-
tion (1.11) or (1.13))

CoroLLARY 2.1. If there exists s€T, E < N, and xeN, such that (E)
=N, |Ixll <2 and
(2.5) lim sup(P§ u(4)—x(A4)) =0 for all u€E,

n—wo Ae/

then the semidynamical system \S,: t € T} is uniquely exact.

3. Examples. (I) Let X =(0, 1] and ./ be the collection of all Borel
subsets of X. Consider the transformation S: X — X defined by

2x, xe€(0,1/2],
Sm:{l, xe(1/2, 17.

The semidynamical system ;S": neN! of all iterates of S is uniquely exact.
Indeed, observe that for ueN,((0, 1], /) we have

iug( S u(A)—0,(4)) = lsnAlplu(S"'(A)) < p(S7*((0, 1)) = u((0, 1/27),
€ ¢Ae-
which implies that (2.5) holds for E= N,, s=1 and x = J,. Since

0y eKN”(sz neN)NnN,,

it is, by virtue of Remark 1.2, a stationary probability measure for this
semigroup, which is asymptotically stable and, according to (ii), is invariant
under our semidynamical system.

(I) Let X =[0,1] and & be the collection of Borel subsets of X.
Consider the transformation S: X — X defined by

0, x [0, 1/4],
S(x) = {Zx— 12, xe(l/4, 3/4),
1, x €[3/4, 1].



STABILITY AND EXACTNESS 125

The semidynamical system {S": neN} of all iterates of S is not uniquely
exact but it is d,-exact and ,-exact.

Hence the corresponding stochastic semigroup {P§: n€N} is not asymp-
totically stable. However, it generates stochastic semigroups {{P%: neN} on
L'(;), i =0, 1, where

iPs(f) = d’;sa"f and V. (4) = (fds; for Ae./, fel'(3),
i A

which are asymptotically stable in the sense of Lasota [5]. This follows from
results of Lin [7].
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