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1. Introduction. In [4] we studied strongly Baer ideals in an a.c. ring. In
this paper we introduce a topology on the set y(R) of all prime strongly Baer
ideals of an a.c. ring R. It is proved that with this topology y(R) is a T-space
with the family of compact open subsets of y(R) as a base for the open sets. It
is shown that R is quasiregular if and only if the exterior of every compact
open subset of y(R) is compact. Further, some equivalent conditions are
established for .#(R) (the space of minimal prime ideals of R with the
hull-kernel topology) to be a compact and discrete space.

2. Preliminaries. For any ideal I of a commutative ring S, we put
I*={xeS|xy=0 for all yel}.

I is called nondense if I* # {0}.

According to Henriksen and Jerison [3], a commutative ring S without
nonzero nilpotents is said to satisfy the annihilator condition or is said to be an
a.c. ring if for any x, yeS there is ze S such that (x)* n(y)* = (2)*. A com-
mutative ring S is called regular if for each se S there exists an element xe S
such that s = s>x. A commutative ring S with at least one nonzero divisor is
said to be a quasiregular ring if its classical ring of quotients is regular. It is
well known that a commutative semiprime ring with at least one nonzero
divisor is quasiregular if and only if for each xe S there is a ye S such that
(x)** = (y)* (see [4], Theorem 2).

According to [4], an ideal of a commutative semiprime ring S is said to
be a strongly Baer ideal if, for any x, y, zeS, (x)* n(y)* = (2)* and x, yel
imply zeI. We now show that if I is a strongly Baer ideal of S, then for any
xeS we have xel if and only if (x)** = I. Clearly, xe(x)**, and so if
(x)** = I, then xel. Suppose xel and let ye(x)**. First we prove that
(xy)* = (¥)*. The inclusion (y)* =(xy)* is obvious. If a lies in (xy)*, i.e.,
axy = 0, then aye(x)*. Since y(x)* =0, we get ay?> =0. Put I = Say. Then
I = 0 because 1> = Sa’y?> = 0 and S is semiprime. This gives ay = 0, whence
ae(y)*. Thus we get (xy)* = (y)*. Therefore (y)* = (yx)* N (0)* (since (0)* = S)
and also yxel. Consequently, by the definition, yel, and hence (x)** < I.
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Thus for any x € S we have x e if and only if (x)** < I. In [4] it is proved that
every strongly Baer ideal is the intersection of all prime strongly Baer ideals
containing it (see [4], Lemma 4). Further, if S is an a.c. ring, then B(R), defined
as the set of all strongly Baer ideals of R, is a complete distributive lattice with
N as the infimum and, for any family {I,} < B(R),

I,={xeS|(i)*n...n(@{,)* = (x)* for some i.el,; j=1,2,...,n
a 1 J J

(see [4], Remark 2).

Throughout this paper, R denotes an a.c. ring with at least one nonzero
divisor, and all ring ideals are assumed to be proper. Most of the topological
concepts used in this paper are found in [5].

3. A topology for the prime strongly Baer ideals. Let
y(R) = {P| P is a prime strongly Baer ideal}
and, for each xeR, let

y(x) = {Pey(R)| x¢P}.

THEOREM 1. The class ug = {y(x)| x€ R} forms a base for the open sets for
a topology on y(R) and further y(R) is a Ty-space (with this topology), and the set
of all compact open subsets of y(R) is ug. Also y(R) is compact.

Proof. Clearly,

Yx) Ny =7(xy) and () 9(x)=7(R),

P(x)eur

so up forms a base for the open sets for a topology on y(R). We show that each
y(x) is compact in y(R). Let

Px) = U 7(x,).

aed

We claim that xe\/ (x,)**. Suppose x¢\/(x,)**. Since \/(x,)** is a strongly
Baer ideal, it is the intersection of all prime strongly Baer ideals containing it.
Therefore, there is a prime strongly Baer ideal P such that x¢ P and
V (x)** = P. Again since x¢ P, we have Pey(x) < (J7(x,), and so x,¢ P for
some ac€d, which is a contradiction. Therefore xe \/(xa)**. Now, as
x€\/ (x)**, there exist iy, i,, ..., i,€ R such that

ije(x,)** and (i)*n(@)*n...n)* = (x)*.

Observe that

N x)* = ) ()* = (0)*.
i=1 i=1



QUASIREGULAR RINGS 205

Since R is an a.c. ring, there exists ye R such that

s

o* =

Jj

(x2)* < (x)*.

1

Now we show that

P(x) € J y(xa))-
j=1

Let Pey(x). Then x¢P. We claim that x, ¢ P for some je{l,2,...,n}.
Suppose not. Then x,,e P for j=1,2,..., n. Since P is a strongly Baer ideal
and

O)* = () (%)%,
j=1

it follows that ye P, and so (x)** < (y)** < P. Consequently, x € P, a contradic-
tion. Therefore x, ¢ P for some je{l,2,...,n}, and hence Pey(x,). This
shows that

y(x) = | y(xa))-
j=1

Thus, for each xeR, y(x) is a compact open subset of y(R).
Let X be a compact open subset of y(R). Since X is open, we have

X = {J(x,).

aed

As X is compact, it follows that
X =) 7y(x,) for some a,..., a,e4.
i=1

Again, since R is an a.c. ring, there exists ye R such that

n

0* = ) (xa)*.
i=1
We claim that X = y(y). Let Pe X. Then x,, ¢ P for some i€ {1, 2, ..., n}. Since
(¥)* = (x,,)*, it follows that (x,)** < (y)**, and so y¢ P. Consequently, Pey(y),
and therefore X < y(y). If Pey(y), then y¢P. As

0% = ) (ea)®

and P is a strongly Baer ideal by definition, x,, ¢ P for some je{l, 2, ..., n}.’
Therefore Pey(x,) = X. Thus X = y(y), and hence up is the set of all compact
open subsets of y(R).
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Next we prove that y(R) is a Ty-space. Suppose P # Q for some
P, Q €y(R). Then either P € Q or Q ¢ P. Without loss of generality we assume
that P & Q. Then there is an element xe P such that x¢ Q. So P¢y(x) and
Qe y(x). Therefore y(R) is a T;-space.

Finally, we prove that y(R) is compact. Suppose R has a nonzero divisor,
say d. Then d ¢ P for every prime strongly Baer ideal P of R. So y(R) = y(d), and
hence y(R) is a compact space. This completes the proof of the theorem.

For any ideal I of R let

y() ={Pey(R)| I & P}.
LeMMA 1. Every open subset of y(R) is of the form y(I) for some strongly
Baer ideal 1 of R.

Proof. Let X be any open subset of y(R). Then

X = Jyx,).

aed

So X = (Jr(x) = U r((x)**) = (\/ (x)**), and \/(x,)** is a strongly Baer
ideal. Hence every open subset of y(R) is of the form y(I) for some strongly Baer
ideal I of R.

THEOREM 2. The lattice B(R) = (B(R), V, ) is isomorphic to the lattice of
all open subsets of y(R), and the mapping I — y(I) (I € B(R)) takes arbitrary lattice
sums to corresponding set unions.

Proof. By Lemma 1, every open subset of y(R) is of the form y(I) for some
I € B(R), so that the map I — y(I) from B(R) to %, the lattice of all open subsets
of y(R), is onto. Also by Lemma 4 in [4] the above map is one-one. Again, for

{Ia}aeA = B(R)’
y(VIL)=Url) and y(,nI)=yI)nyU,), o Bed.

Therefore B(R) is isomorphic to the lattice of all open subsets of y(R). This
completes the proof of the theorem.

Let
M (R) = {P|P is a minimal prime ideal of R}
and for each xeR let
M(x) = {PeMR)|x¢P).

It is well known that the sets .#(x) (x € R) form an open base for the open sets
for a Hausdorff topology on .#(R). We now give a characterization of
quasiregular rings.

Integral domains and complete direct sums of integral domains are
examples of quasiregular rings. For various characterizations of quasiregular
rings the reader may refer to [1], [2] and [4].
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THEOREM 3. The following statements on R are equivalent:
(1) R is quasiregular.
(ii) For all x, yeR there is x'e(x)* such that

M (y) O (M (R)— M (x)) = M (yx).

(iii) y(R) = # (R).

(iv) Each y(x) is closed in y(R).

(v) y(R) is Hausdorff.

(vi) For every yeR, .#(y) is compact as a subset of #(R).

Proof. (i) = (ii). Suppose (i) holds. Let x, ye R. By (i) there is x’ € R such
that (x)** = (x)*. Observe that xx' =0 and (x+x)* = {0}. Let
Pe M (y) N (A (R)— A (x)).

Then y¢ P and xe P. Since P is a minimal prime ideal and (x + x')* = {0}, by
Lemma 1.1 of [3] it follows that x'¢ P, and hence Pe.#(yx'). Therefore

M () O\ (M (R)— A (x)) S M (yx).

Now suppose Pe .#(yx’). Then y¢ P and x'¢ P. As xx’ =0 and P is a prime
ideal, we have xe P, and so Pe.#(y) n(#(R)—.4#(x)). Thus

M (y) O (M (R)— M (x)) = #(yx'),
and hence (ii) holds.
(ii) = (ii1). Suppose (ii) holds. Clearly, .#(R) < y(R). Let Pey(R). Choose
any xe P and y¢P. By (ii), there is x'e(x)* such that
M(y) O (M (R)— M (x)) = #(yx),

so that (y)* = (yx+ yx')*. Consequently, x'¢ P. Thus for every xe P there is
x' ¢ P such that xx’ = 0. Therefore, by Lemma 1.1 of [3], Pe .#(R), and hence
P(R) = A (R).

(iii) = (iv). Suppose (iii) holds. Then for each xe R we have y(x) = #(x),
which is closed in .#(R) = y(R), and so (iv) holds.

(iv) = (v). Suppose (iv) holds. Let P and Q be two distinct prime strongly
Baer ideals of R. Choose x € P such that x¢ Q. Then Q e y(x) and P e y(R)—7y(x).
Since y(x) is closed, there is ye R such that

Pey(y) = y(R)—y(x).
Also y(x) ny(y) = Q. Thus (v) holds.

(v) = (vi). Suppose (v) holds. Then y(R) = .#(R). Now the result follows
from Theorem 1. '

(vi)= (i) follows from Theorem 3.4 in [3].

4 — Colloquium Mathematicum LIX.2
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Remark. Theorems 1 and 3 show that R is quasiregular if and only if
#(R) is a Boolean space. (A topological space X is called a Boolean space if
X is compact, Hausdorff and has a base consisting of compact open subsets.)

We shall denote the closure, interior and exterior of a subset X of y(R) by
clX, intX and extX, respectively. Clearly, for any subset X of y(R),

cdX ={Pey(R)| () q< P}

geX
We now prove some lemmas we need.
LEMMA 2. If Ie B(R), then I* = (\{Pey(R) | I & P}.

Proof. Suppose I € B(R). Since R is semiprime, we have I n I* = {0}, and
sO

I*< (N {Pey(R)| I & P}.
Let x ¢ I*. Then xa # O for some ael. Put S = {a, a?, a?, ...}. Obviously, S is
a multiplicative subset of R (for the definition see [4]). Let
O(S) ={beR | bc =0 for some ceS}.

By Lemma 6 and Definition 3 of [4], O(S) is the intersection of all the minimal
prime ideals containing it. Again, since x ¢ O(S), there is some minimal prime
ideal P of R such that x¢ P and O(S) < P. Clearly, by Lemma 1.1 in [3], a¢ P,
and so I ¢ P. Also P is a prime strongly Baer ideal. Therefore

x¢(V{Pey(R)| I & P}.

Consequently, I* = ({Pey(R)|I & P}. This completes the proof of the
lemma.

LEMMA 3. Let 1€ B(R). Then

@) cly() = y(R)—y(I*),

(i) int(y(R)—y(I)) = y(I*), and

(iii)) I = I** if and only if y(I) = intcly(I).

Proof. (i) follows from Lemma 2.

(i) int(y(R)—y(I)) = (cly()) = (y(R)—y(I*))' = y(I*), where ' denotes the
set theoretic complementation.

(iii) follows from (i), (ii)) and Theorem 2.

Using Lemma 2 we shall establish a necessary and sufficient condition for
R to be quasiregular.

THEOREM 4. R'is quasiregular if and only if the exterior of every compact
open subset of y(R) is compact.

Proof. Suppose R is quasiregular. Let X be a compact open subset of
?(R). Then, by Theorem 1, X = y(x) for some xeR. Now

extX = exty(x) = exty(x)** = y((x)*).
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As R is quasiregular, (x)* = (y)** for some yeR. Therefore y((x)*) = y((y)**)
= y(y), which is compact. Hence the exterior of every compact open subset of
y(R) is compact. :

Conversely, assume that the exterior of every compact open subset of y(R)
is compact. Let xe R. Then y(x) is a compact open subset of y(R). So
exty(x) = y(x*) is compact and also open. Therefore, by Theorem 1,
P((x)*) = y(») = y((»)**) for some yeR, so that, by Theorem 2, (x)* = (y)**.
This shows that R is quasiregular, which completes the proof of the
theorem.

In [3] it is proved that .#(R) is compact, Hausdorff and extremally
disconnected if and only if for any ideal I in R there is a€ R such that I* = (a)*
(see Theorem 4.4). The following theorem gives another equivalent condition
for #(R) to be compact and extremally disconnected.

THEOREM 5. The following two statements are equivalent:
(i) For any ideal I of R, I** =(a)* for some a€R.-
(ii) (@) The exterior of every compact open subset of y(R) is compact, and
(b) the interior of the intersection of any family of compact open subsets
of y(R) is compact.

Proof. Suppose (i) holds. Then R is quasiregular, and so, by Theorem 4,
the exterior of every compact open subset of y(R) is compact, therefore (a)
holds.

Now we prove that (b) holds. Let {g, | ie 4} be a family of compact open
subsets of y(R). Then for each i€ 4 there is x; € R such that g, = y(x,). Since R is
quasiregular, y(R) = #(R) and y(x;) = .#(x,) for every i€ 4. Also for every
x;€R there is y;e R such that (x)* = (y;)**. Observe that

int([) g;) = int (") #(x) = int (A (R)— ) # ().

ied ied ied

Let I =\/(y)**. Then

ied
int (# (R)— | #(y)) = int (#(R)—A(])) = M (I*) = M ((a)**),

which, by hypothesis, equals .#(a), a compact open subset of y(R). Therefore
the interior of the intersection of any family of compact open subsets of y(R) is
compact.

(ii) = (i). Suppose (ii) holds. Then, by (a) and Theorem 4, R is quasiregular,
and so, by Theorem 3, y(R) = #(R). Let I be an ideal of R. Observe that

M (I**) = int cl A (I**)
(by Lemma 3). Again notice that



210 C. JAYARAM

cl#(I**)= #(R)— A (I*)

= MR- M (| () = ) (AR —A(x)*).

xq€l* xqcl®

Since R is quasiregular, for each x,eI* there is y,€ R such that (x)* = (y,)**.
Therefore

() {AR)— M (x)**} = () {A(y)**}.

xq€l* a

Thus
M (**) = int () {A#(y)**})

and each .#(y,)** is a compact open subset of .#(R), and so, by (b), # (I**) is
a compact open subset of .#(R). Consequently, there is aeR such that
M (I**) = M (a) = # ((a)**), and hence [** = (a)**. This completes the proof
of the theorem.

LEMMA 4. Let y,(R) = {Pey(R) | P = P**}. Then the subspace y,(R) is
discrete.

Proof. Let X = {P, | ie 4} be any subset of y,(R). Then for each ie 4 we
have P, = (x)* for some 0 # x;e€ P¥. Suppose PeclX. Then

N (x)* < P.

ied

If x;eP for all ie 4, then

P*c (\(x)*< P,
ied
and so P* =(0), which is absurd. So x;¢ P for some ie 4. Consequently,
P = (x)* for some ie 4, and so Pe X. Therefore X = clX, and hence y,(R) is
discrete.

THEOREM 6. The following statements are equivalent:

(i) R is quasiregular and every minimal prime ideal is nondense.
(ii) #(R) is compact and discrete.

(iii) B(R) is a finite Boolean algebra.

Proof. (i)=(ii) follows from Theorem 3 gnd Lemma 4.

(i) = (iii). Suppose (ii) holds. Then y(R) = #(R). Since y(R) is compact
and discrete, the lattice of all open subsets of y(R) forms a finite Boolean
algebra, and so, by Theorem 2, B(R) is a finite Boolean algebra.
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(iii) = (1). Suppose (iii) holds. Clearly, every minimal prime ideal is
nondense. Let xeR. Then (x)* v (x)** = R. Choose any nonzero divisor
de((x)* v (x)**). Then

@O*Nn()* =(@*={0} for some ie(x)* and je(x)**.

Since i e (x)*, it follows that (x)** < (i)*. Now let ae(i)* and be(x)*. Then
ai = 0 = bj; therefore

abe(@* N (j)* = (d)* = {0},

and hence ab = 0. Consequently, (i)* = (x)**, and so (x)** = (i)*. Therefore R is
quasiregular. This completes the proof of the theorem.

I thank the referee for his suggestions.
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