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1. Closures of /-sets. Let I' denote a discrete abelian group which is
infinite. We use bI’, the group dual to G,, for the Bohr compactification of I,
where G is the group dual to I' and G, is G with the discrete topology.

Definition. A subset E of I' is said to be an I -set if every bounded
function of E can be extended to bI" as a continuous function. Equivalently,
E =T is an I -set if every bounded function on E is the restriction to E of an
almost periodic function I' [2, p. 32].

The following Theorem is due to C. Ryll- Nardzewski [2] when I' = R,
the real numbers. It was generalized in [3] to arbitrary metrizable l.c.a.
groups and is stated here for discrete abelian groups.

THeoReM 1. If E =T is an I-set, then E has no points of I as cluster
points in bI'. Consequently, the union of E with any finite subset of I is again
an | -set.

In this section we show that Theorem 1 does not characterize I' as a
subset of bI'. By an “ineffective” construction we prove Theorem 2 below.

THEOREM 2. There is an element ¢ e bI'\T" which is outside the closure
in bI' of every I-subset of T.

Proof. We use # S for the cardinality of a set S. The number of
I-sets in I is at most 2(*D. In [4, p. 32, Theorem 5] Hartman and Ryll-
Nardzewski show that I' contains an I-set of the same cardinality as I
Since every subset of an I-set is an I-set, the number of I-sets in I' is
exactly 21*D. We well -order the I -subsets of I' as |E,| « <A} so # |E,: «
<f<A <A

That #G =2*" is well known [7]. (We thank Professor Ross for
_bringing [7] to our attention.) Here is a proof. Since G is compact and
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infinite, % G >2"°. Let T be the circle |z =1 of the complex plane.
Then # G < # (TN =(# T)* =2 ) *" =2"*" = 2*T Thus, when I is
countable, we have the equality #G = 2*!. When I' is uncountable, there is
an independent subset of I' of the same cardinality as I'. Clearly #G > 2*T,
which establishes the equality #G = 2*",

¢ shall be inductively defined on a subgroup of G and then arbitrarily
extended to all of G. The subgroup shall be inductively produced as an
increasing union of subgroups. Here is the construction. For each a < A, we
shall choose a finite set K, = G and a character ¢, on G,. We shall let H, be
the group generated by () K,. We impose the three conditions (i)(iii) below.

r<a
(1) « < B implies ¢ply, = Paln, -
For each finite set F = {f,,...,f,} <G and each X =TI, we let

<X’ F> = {(<y’fl>’ LR <y’.f;l>)| yEX}

Let K, = {ga15 ---» Gan,)- Condition (ii) is this:
(i) (ida}s Ki) & <Eq» Ko>~ in T™.
Note that (ii) implies ¢, ¢E,.
We well-order I' also, I' = {y,| a < #I'}. Condition (iii) is this:
(ii1) For each a < # T, there exists g, H, such that

Da(90) # V> 9a)-

Note that (iii) implies ¢, # 7,.
Our final ¢ is defined to be ¢, on H, and we extend ¢ arbitrarily off
\U H,. Clearly ¢ebI'\T and ¢ ¢E, for a < A. It remains to be shown how

a<4
¢, may be found so that (i), (i) and (iii) hold.

Suppose that we have successfully chosen {K,},<; and {¢,},<;, B < 4.
Let G4 be the group generated by ) H, and define ¢; to be ¢, on H, (and

a<p

elsewhere as consistent). Suppose that every extension of ¢; to all of G gives
us a character in E;. Thus ¢;+(Gy)* < E;. Then G5 would be both a Helson
set and a group. Since # (Gy) < A4, there is a set S =G\Gy of elements
independent of G, (and each other) of cardinality A. Thus # (Gz) > 2*5.
that is, G; is infinite. That is a contradiction, because an infinite group may
not be a Helson set. Thus, some extension of ¢, is not in E,. There is
therefore some’ finite set Kz on which that extension, which we call ¢;, has
property (ii). If B < #TI', we choose an element g; of G independent of the
group generated by () K,)u Kj. On g, we define ¢, so that ¢, # y,. Let
a<p

Ky = Kgu {gp}. (ii) and (i) still hold.
That completes the induction and ends the proof of Theorem 2.

Remark 1. It is evident that we may choose ¢ to be a member of any
previously assigned basic open set in bI'. Such a set has the form



THREE RESULTS ON I-SETS 143

U(A;91s.--sgns &) = {Webl| |¥(g)— (4, g:)| <&, 1 <i<n}. To do that we
merely specify ¢(g;) = A(g;) as the —1st step in the inductive construction.
Remark 2. There are 22*D such ¢. When choosing K,, include as a
last step h,e G independent of all members of K,, y <«, and of the other
members of K,. On h, let ¢, take one of two distinct possible values.

ProsLEM (P 1292). Let E =TI such that E is not the finite union of
I -sets. Does there exist ¢ E such that ¢¢F for all I-sets F?

2. [-sets generate. The following Proposition 3 is an analogue of
results of Varopoulos, Kérner and others: there exists a Helson subset E of
the circle group T such that E+ E = T. Whether the full analogue holds for
I -sets we do not know. Proposition 3 is of course trivial in the case of Z.

ProposITION 3. Let I' be a discrete abelian group. Then I' contains an
I-set E such that E generates I.

Proof. Let E, be a maximal §-Kronecker subset of I', that is, for
every f: E, — T, there exists xe G such that |f(y)— {x, y)| < 3 for all yeE,.
Non -trivial §-Kronecker subsets of I' exist if I' contains an infinite
independent subset consisting of elements of order at least 19, or an element
of infinite order. That maximal such sets E, exist follows from the
compactness of G, an argument we leave to the reader. Clearly E, is an I-
set. Let A be the subgroup of I' that is generated by E;. Then I'/A is a
group of bounded order, and therefore T'/A contains an independent set F
which generates it. Let E, = I" be a set of elements such that y+—7y+ A maps
E, one-to-one onto F.

Then E, is an independent set and E, nE, = 0, since (E,+A)/A
=Fn{0} =0 in b(I'/A) by Ramsey [3]. (That follows from the
independence of F and the functorial properties of passage to the Bohr
compactification, precisely b(I'/A) ~ (bI'/A).) Therefore E, UE, is an I-set.
Of course E, UE, must generate I, since E,+A =F generates I'/A
= I'/Gp(E,). That proves the Proposition.

ProsLEM (P 1293). S. Hartman [6, pp. 112-113] shows that there exist
I-sets E < Z such that Gp(E) =bZ. Do there exist such I-sets in all
non -compact abelian groups?

3. I is a Borel subset of brI.
THEOREM 4. Let I' be a locally compact abelian group. Then I is a
Borel subset of its Bohr compactification brI.

The key idea of the proof of Theorem 4 is contained in the next Lemma.

LEMMA 5. Let I be a divisible discrete abelian group. Then I is a Borel
subset of brI'.

Proof. Since I' is divisible, I' is a direct sum of copies of Q and
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groups Z(p®) [5, p. 165]. Let E be a maximal independent subset of I". Then
for every n > 1, each ye E has an nth root y, (we choose one), and if E,

= {y,: y€E}, then E, is also a maximal independent set and I' = U Gp(E,).

Thus, it will suffice to show that Gp(E,) is a Borel subset of hI, for each n
=1,2,... We give the proof for the case n = 1.

Eis the Stone-Cech compactification of E, so E is an open subset of the
compact set E. Let E_ denote the elements of E that have infinite order.
Then E, is an open subset of E also, and

Q=Eu(—-E,)u 0}

is a Borel subset of brI. |
Let 10 =0, let mQ =Q+(m—1)Q for m>1 and let 0™ =Q x ... xQ
(m times). We shall show that mQ is a Borel subset of hI', for all m > 2. Since

(UmQ = Gp(E), that will suffice. The closure of Q™ is denoted by Q™.
1

Let Q'™ = Q™/~, where ~ is the equivalence relation x = (x,, ..., x,,)
~ (¥1s.... ¥m) = v if v is obtained by permutation of the elements of x, and
0™ =0 x...xQ0 (m times). We give Q™ the quotient space topology.
Because permutations of coordinates induce homeomorphisms of Q'™, the
projection of O™ onto Q'™ is open (and continuous). Note that Q™ is an
open subset of Q™. so the image Q'™ of Q™ in QY™ is an open set.

Let P = {(xy, ..., xn)€Q™: ) x;e(m—1)Q}. Then P™ is a closed
subset of Q'™ and the image, F, of "™\ P™ is open in Q™.

Of course, the mapping (X, ..., Xp) 2 O (X1, ..., Xp) = ij from Q™ to

mQ factors through QY™; let ¢, be the (continuous) mapping from o™ to mQ
that is induced by ¢.

We claim that the restriction of ¢; to F is one-to-one and onto
mQ \(m—1) Q. Checking that the range of ¢,|r is mQ\(m—1)Q is routine. To
see that ¢,|r is one-to-one, apply Lemma 6 (below), which asserts that if
(X1y ooy Xmh (V15 ooy V) €O\ P™ then ) x; =)y, if and only if the y's are
a permutation of the x’s. That implies at once that 1 is one-to -one.

We now claim that ¢,|¢ is a homeomorphlsm Since ¢, is contmuous

that amounts to showing that if Zx“’ converges to Zy,, then
1
(x%, ..., x9) converges to an appropriate permutation of (y, ..., Ym)-

Of course (x{, ..., x¥) has an accumulation point (z,, ..., z,,,)eQ""’. of
course, by the continuity of addition, Yzi=Yy;. Sincelz ziemQ\(m—1)Q,
(24, .--» Zw) ¢ P™. Since ¢, is one-to-one, (z4, ..., z,,) is a permutation of
V1» --+» Ym)- Of course, that applies to every accumulation point of
(x®, ..., x@), in Q™. Therefore ¢;! is continuous.
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Since ¢, is a homeomorphism from F to mQ\(m—1)Q, ¢, preserves
Borel sets. But the image of Q™\P™ in F is open, so ¢ (Q™\ P™)

= mQ\(m—1)Qis a Borel set in I'". Therefore Gp(E) = Gp(Q) = U mQ is a Borel

set. That ends the proof of Lemma 5.

LEMMA 6. Let E be an independent subset of the abelian group G.
Let E, denote the set of elements of E that have infinite order and let
Q=EuU(-E_,)u{0}. If

(X1, s Xm €SO, m21, {yy,.ccs Y} €O, YV #(m—1)Q
1

and Y x; =) y,, then the y’s are a permutation of the xjs. (In the above
0Q =10}, mQ=m—-1)Q+Q for m>1)

Proof. The lemma holds when m = 1. We shall induct on m.

We may assume that the conclusion holds for 1 < m' < m. Suppose
{X15 eoes Xm} €O, {¥15.--» Ym} SQ and ) x; =) y;. We shall show that that
implies one of the following from which the conclusion of the Lemma (for m)
will follow.

a) For some jo, ko, Xj5 = Vi,

b) Y x;e(m—1)Q.

c¢) All x;, y, have infinite order.

In case a), Y {x;: j#jo} =2 {W: k # ko}, and the inductive hypothesis
supplies the required conclusion.

We may therefore assume x; # y, for all 1 <j, k < m. Here is how case
b) (excluded by the hypotheses, of course), might arise.

Suppose there exists jo such that for all k, x;, # +y,. Then

Y% x5 =x0} + X {x X # £xj} =Yy =0.

By the independence of E, ) {x;: x; = £x; } = 0. Therefore } x;e(m—1)Q.

We may therefore assume that for each j there exists a k such that
xj = — y,. Such elements x; cannot have order two (by Case a)). Since if x;e E
has finite order not equal to two, —x;¢Q, x; must have inﬁnite order.
(That x; =0 is ruled out by Case b)) Thus all x; have infinite order. The
same reasoning shows all y, have infinite order as well.

We may renumber the x;s, y’s so that x,,..., x, and y,, ..., y, are
distinct. The first sentence of the preceding paragraph shows r = s. If some

x; = —x; for 1 <j<I<m, then Zx-e(m—l)Q, so not only are x,, ..., x,

distinct, but x; # —x, for all 1 < j, | < m. Therefore
ij=2m,x, and Y m;=m.
1 1
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m r r
Similarly, Y y, =) my, and ) n, = m. Therefore
1 1 1
r r
Yomix; =3 n Y.
1 1
By renumbering the y’s again, we may assume y; = —Xy, ..., J, = —X,, SO
r r
Y mpx; = -3 nx,.
1 1

Therefore Y (m;+n;)x; = 0.
1

Since the x; are independent, (m;+n;) x; = 0. Since the x; have infinite
order, m;+n; =0. But the m; and n; are all > 0. That contradiction
completes the proof of Lemma 6.

Proof of Theorem 4. We first consider the case that I' is discrete.
Then I' can be embedded in a divisible group A [5, p. 167]). By Lemma 5,
A is a Borel subset of bA. Straightforward functorial arguments show
that ' = A nbI' and, hence, that I' is a Borel subset of br.

Now suppose that I' = R" x I'y where n > 0 and I'; has a compact open
subgroup A. Then I';/A is a Borel subset of b(I",/A). Therefore I'; is a Borel
subset of bI',, since bI"';/A = b(I",/A). Also, R" is a Borel subset of bR", since
R" is o-compact. Therefore R"xI'; is a Borel subset of b(R"xI)
= bR" xbI",. That ends the proof of Theorem 4.

Remarks. (i) Some years ago Y. Meyer pointed out that the proof of
[1, 1.9.1] assumes that I' is a Borel subset of bI" (that assumption is easily
skirted), and that whether I was indeed a Borel subset of hI" appeared to be
unknown. (Insertion of the phrase “on a ¢ -compact subset of” at the end of
line 19, p. 33 of [1] eliminates the difficulty.)

(ii) If one only wishes to know that I' is u-measurable for all ue M(I),
then it suffices to show that I' is an analytic subset of bI'. Since Q—Q 1is
analytic whenever Q is, one concludes that mQ is analytic for all m > 1, and
hence that I' is analytic in bI'. The work in the proof of Lemma 5 was
needed to show that I' was Borel, since X — X is not necessarily Borel, even if
X is Borel.

(iti) Analysis of the proof of Theorem 4 shows that I' is more than a
Borel set: I' is countable union of sets, each of which is the intersection of a
compact set with an open set.

(iv) We thank Professor Hartman for calling [6] to our attention,
reading preliminary versions of this note with much care, and for suggesting
the problem cited given at the end of Section 2; it is included here with his
kind permission.
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(v) We are grateful to K. Stromberg and S. Saeki for pointing out gaps
in the earlier proof of Lemma 5. Their stronger version of Theorem 4 will

appear in [8].
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