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1. Introduction. Consider a semilinear controlled evolution system in
some Banach space X:

(1.1) (1) = Az(t) + f(t,2(1),u(?)), te(0,T],

where A generates a Co-semigroup e4* on X and f is a given map. The

optimal control problem we are going to consider is the following:

ProBLEM MC. Minimize the functional
T
(1.2) Ju() = [ fO(t,2(t), u(t)) dt
0

over all pairs (z(-), u(-)) subject to the state equation (1.1) (in some mild
sense), the end points constraint

(1.3) h(z(0),z(T)) = 0,
and the mixed constraint of the state and control
(1.4) g(t,z(t),u(t))=0, a.e.tel0,T),

where f0, g, h are given real-valued functions.

The main feature of our problem is that the maps f°(t,z,u), g(¢,z,u)
and h(z,y) will only be assumed to be Lipschitz continuous (not necessarily
C!)) in z and (z,y), respectively. We find that this allows our result to
cover many interesting problems with state and/or mixed type constraints.
To take a glance of it, let us give the following simple example. Let {2 be a
convex and closed subset of X x X and let Q(t) be a family of closed subsets
of X with certain measurability in {. We look at the following constraints:

(1.5) (2(0),2(T)) € £,
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(1.6) z(t) € Q(t), ae.te0,T).
Set
g9(t,z,u) = d(z,Q(t)) = inf{|z - 9| : y € Q(2)},

h(z,y) = d((z,y), 2) = inf{(|z - 2]* + |y — §1°)'/? : (2,9) € 2}.
Then (1.5)—(1.6) is a special case of (1.3)—(1.4). It is clear that we may
cook up many interesting examples similar to the above. In particular, if
we let g(¢,z,u) = 0, then we have the problem with no mixed constraints.
Thus, our problem properly contains those given in [12, 13]. If we further
take h(zg,z1) = 29 — Zo, then the problem becomes the one with a given
initial state o and free terminal state. This shows that our problem also
essentially covers those given in [1, 2, 14].

In this paper, we will apply the method of [13] together with some ideas
of [2, 6, 7, 18] to derive the Pontryagin type maximum principle for any
optimal trajectory and control of Problem MC. The key tool is Ekeland’s
variational principle ([9, 10]) and the concept of Clarke’s generalized gradi-
ent ([6, 7]).

We refer to [5, 6, 7, 16] for classical results about the Pontryagin Max-
imum Principle for finite-dimensional cases and to [1-4, 11-14, 17] for in-
finite-demensional cases. We should note that in [11], Fattorini discussed
a general input-output system under the condition that the reachable set
of the variational system is finite-codimensional. Essentially, the problem
studied was also of no mixed constraint. In [6, 7], Clarke studied finite-
dimensional systems with mixed constraints. The approach we use in this
paper is different from that of [6, 7]. Also, unlike [6, 7], our final result
will not involve measures. It seems to us that by using the idea of [18],
for systems governed by parabolic partial differential equations, the term f
appearing in the state equation can also be only assumed to be Lipschitz
continuous in z. We will work out the details elsewhere.

2. Assumptions and the main result. In this section, we state the
control problem, the basic assumptions and the main result. Let X be a
Banach space with norm | - | (from the context, there will be no ambiguity
with the absolute value, of course), and let X* be the dual space of X with
(-,-) being the duality between X and X*. Let U be a metric space with
metric p and T > 0 be a constant. We let

U={u(-):[0,T) - U, u(-)is measurable}.
Now, let us make the following basic hypotheses:

(H1) The operator A : D(A) C X — X is the generator of some Cy-
semigroup e4! on the space X.
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(H2) The maps f : [0,T]x X xU — X, f°: [0,T]x X x U — R,
g:[0,T]x X x U - Rt =[0,00) and h: X x X — Rt satisfy:
(i) £, f° and g are strongly measurable in t, continuous in « and Lip-
schitz continuous in z. Moreover, for some constant L > 0,

(2.1)  |f(tz,u) - f(2,2,u)l, |f°(t,z, u) - fo(t’i’ u),

lg(t,z,u) — g(t,%,u)| < L|z - 3|, Vte[0,T),z,2€ X,ue U,
(22)  |£(2,0,u)],1£°(t,0,u)],l9(2,0,u) < LV (t,u) €[0,T]x U,
and f is continuously Fréchet differentiable in z.

(ii) There exists a constant L > 0 (for simplicity, we take it the same as
in (i)) such that

(2.3) |h(z,y) - h(2,9)| < L(lz - 2| + |y - 9l), V(z,9),(2,9) € X x X.

Remark 2.1. The constant L > 0 can be replaced by different L!(0,T)
functions in different places of (2.1)-(2.3).

It is easy to see that under (H1)-(H2), for any zo € X and u(-) € U,
there exists a unique solution of the following integral equation ([7, 11]):

(2.4) z(t) = etz + f eAt=) f(r,z(r),u(r))dr, te[0,T).
0

We call the solution z(-) € C([0,T]; X) of (2.4) the response of our controlled
evolution system under control u(-). Sometimes, z(-) is also called the mild
solution of (1.1).

Now, our optimal control problem can be restated as follows:

ProBLEM MC. Minimize the functional
T
(2.5) Ju()) = [ f2@t,2(), u(t)) dt
0

subject to
(u(-) €U,

t

(2.6) ) z(t) = eftzy + 6[6‘4("")_{(1', z(r),u(r))dr, te[0,T],
g(t,z(t),u(t)) =0, a.e. t €[0,T],
{ h(2(0),z(T)) = 0. |

We assume throughout the paper that there exists a pair (Z(+), @(-)) such
that (2.6) is satisfied and the functional (2.5) is minimized. Any such pair
is called an optimal pair.

Before stating the main result of the paper, let us recall the notion of
generalized gradient for Lipschitz continuous functionals on Banach spaces
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(see [7]). Let Z be a Banach space and let £ : Z — R be Lipschitz continuous.
Then we define

{2 + ev) - £(2")

(2.7) O(z;v) = z'_gn’lew ~ , Vzve Z,
(2.8) 0L(2) = {C € Z* | {¢,v) L L(z;v), Vv e Z)}.
For details, see [7]. Next, for any z € Z, we define

(2.9) Te(2)={2€ Z|(3C) <0, V(€ o)},
(2.10) Ne(z) ={C € 2" (2,() <0, VZ € Ti(2)}.

We call Ty(2) and Ng(z) the generalized tangent and normal cone of the
functional £(-) at z € Z, respectively. It is clear that they are weakly
(weakly*) closed convex cones. If £(-) is Fréchet differentiable, they are
actually the usual tangent space and the normal cone of the level set {2 €

Z | L(2)=£(2)} at 2.
Now, assume (Z(-), %(-)) is an optimal solution to Problem MC. We set
F(t) = fz(t,%(t),a(t)), telo,T],
and define the evolution operator G(-,-): {(t,s) € [0,T] x [0,T]| s < t} —
L(X) by

t
(2.11) G(t,s)y = A=)y + feA("")F(r)G(r, s)ydr, 0<s<t<T.
s

Then we define
T
(212) R={ceX|€e= [GT,Nf(ra(r),u(r)) = f(r,5(r), ur))dr,
0
u() € u}7
(213) Q={n€X|n=2-G(T,0)z, (20,2) € Ta((0),Z(T))}.
Next, we introduce the Hamiltonian
(214) H(t’ z,u, ¢1 ¢0’ ()00) = (’¢, f(t,:v,u)) + ,wOfO(t,z, u) + ‘Pog(t’z’ ‘ll,),

V(t,z,u,%,9°% ") €[0,T]x X x U x X* xR xR,

where (-, ) is the duality between X and X™*.
Now, let us give one more hypothesis:

(H3) There exists a § € (0,1] and a neighborhood O of (Z(0),Z(T)) such
that

(2.15) Iaolfy- + |a1|3\r. Z 62,
V (ao,a1) € Oh(zo,z1),(%0,21) € O, with h(zg,z;) > 0.
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It is clear that if h is continuously Fréchet differentiable and Dh(Z(0),
Z(T)), the Fréchet derivative of h at (Z(0),Z(T)), is bijective, then (H3)
holds. Also, by [13], we know that if

h(zo,z1) = dg(zo,21) = inf {|yo-2o| + |y — =1 |?}?,
(vo.41)EN
V(z0,21) € X X X,

with {2 being a subset of X x X, then (H3) holds.
Now, let us state the main result of this paper.

THEOREM 2.4 (Maximum Principle). Let (H1)-(H3) hold. Let (z(-),u(:))
be an optimal pair for Problem MC. Let R and Q be defined as in (2.12)-
(2.13) and suppose R — Q is finite-codimensional in X ([11-13]). Then there
ezists a triplet (¢(-), ¢¥°,¢°) € C([0,T); X*) X R x R such that

(216) (w()’ ¢0,(P0) # 0,
(2.17) ¥, ¢° <0,

T
(2.18)  ¥(t) = eA"T-YT) + [ A C=¢(r)dr, teo,T),
t

((r) € Oz H(r,z(r), u(r), ¥(r),¥°, ¢°), a.e. r€[0,T],
(2.19)  H(t,z(t), u(t), v(t),¥°, ¢°) = max H(t,z(t), u,¥(t), %, %),
ae.t€[0,T),
(2.20) (—=¥(0), ¥(T)) € Nu(2(0),%(T)).

We see that, roughly speaking, 9(-) satisfies the evolution equation
(221)  ¥(t) € —A™¥(t) - B H(t,Z(t), &(t), ¥(t),¥° "), t€[0,T],

which is the “adjoint system” of (2.1) along the optimal pair (Z(-), (- )),
while (2.20) is the transversality condition.

3. Proof of the main result. First of all, for any (zo,u(-)) € X x U,
we denote the unique solution of (2.4) by z(-; zo,u(-)) and define

(3‘1) zo(t;an u()) = ffo(r,z(r; Zo, "’())’u()) dT, te [O’TL
0

t
32)  ¥(tsz0,u(-) = [9(r,z(r;z0,u(-)),u())dr, te[0,T).
)
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We note that since g is nonnegative, the mixed constraint in (2.6) is equiv-
alent to

(3.3) y(T; 20, u(-)) = 0.
Next, we introduce a metric on X X ¥/ as follows:
(3-4)  d((zo,u("), (%0, ("))
= [lz0 — Zo|* + meas{t € [0, : u(t) # @(1)}*]'/?,
V(zo,u(')),(fio, ft()) €X xXU.
Similar to [11], we know that (X x U,d) is a complete metric space (see
also [13]). Now, we let (Z(-), %(-)) be an optimal pair of Problem MC with

Z(0) = zo and let z°(-) and (-) be the corresponding functions defined
by (3.1) and (3.2). Then, for any € > 0, we define

(3.5)  Fe(zo,u(-)) = {h(z0,2(T; z0,u(-)))? + d(e)(z°(T; 2o, u(-)))?
+ y(T; zo,u(+))*}/2, V(zo,u(-)) € X x U,

where 2(¢) = (—00,z%T) — ¢]. It is immediate to show that the func-

tional F, is continuous and everywhere defined on (X xU, J) Moreover, we
see that

(3.6) F.(zo,u(-))>0, V(zo,u(:))€ X xU,
3.7 F (Zo,u(:)) =€ < }1)1‘% F(zo,u(-)) + €.

Thus, by Ekeland’s variational principle ([9, 10], see also [13]), we can find
a pair (z§,u%(-)) € X X U such that

(3.8) d((25,v*(-)), (%0, &())) < VE,
(3.9) Fe(z5,u*(")) < Fe(Zo0, (")),

(3.10)  Fe(zo,u(-)) 2 Fe(z§, u(")) — ved((z§, u*(")), (zo, u(-))),
V(zo,u(:)) € X XU.

We set

z°(+) = z(+; 25, u* (")),

z%%(-) = 2°(-; 25, u* (")),

y°(-) = y(+5 26, v*(-))-
Next, let (zo,u(:)) € X x U be fixed. Then, as in [12, 13], we have the
following result.

PROPOSITION 3.1. For any p € (0, 1], there ezists a measurable set E, C
[0, T) such that

(3.11) meas E, = pT,



OPTIMAL CONTROLS

41

t
(3.12) p [eAtDAf(r)dr= [ eANAL(r)dr+o(p),
0

[0,4)nE,
(3.13) p fAfg(r) dr = f Afo(r)dr + o(p),
0 [0,f)nE,
t
(3.14) p [ Age(rydr=" [  Ag(r)dr+o(p),
0 [0,4)nE,

uniformly in t € [0,T], where

Afe(r) = f(r,z%(r), u(r)) = f(r,z%(r), u*(r)), r € [0,T7,
(3.15) ¢ AfX(r) = fo(r,2%(r), u(r)) = fO(r,z(r),u(r)), r€|0,T),

Age(r) = g(r,z%(r), u(r)) — g(r,2°(r), u*(r)), r€[0,T].
Now, we let
(3.16) 25, = 2§ + pzo,
(3.17) ue (1) = { w0, ELINE,

Correspondingly, we let
25(+) = 2(+5 25,5, u5(+)),
2p(-) = 2%(+; 25,5, uj()),
Yo(-) = y(: 2,5, up ()
Then, from (3.10), (3.11) and (3.17), we have

(318)  —vEllmol? + T2 < Fi(ah,, u5()) - Fula,u(9):
Also, from (3.12) and (3.16)—(3.17), we see that

(3.19) z5(t) = z°(t) + p€c(t) + o(p), uniformly in ¢t € [0, T,
with '

(3.20)  &(t) =e*zo+ [ AT fi(r,25(r), us(r))Ec(r) dr
0

t
+ [eAtMAf(r)dr, te[0,T).
0

Hence, noting that h is nonnegative, one has

(3:21) T S{h(a5,,,25(T))? - bz, 2 (DY)

< 2h(z,2°(T))
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— h(z + pzo, y + p€e(T)) — h(zp, z}1)
(zh,z})—(z§.2¢(T)),pl0 P
= 2h(z§, z°(T))R°((z§, z°(T)); (20, €:(T)))
= 2h(z§,z°(T)) max{{ao, zo) + (a1,&:(T)) :
(a0, a1) € Oh(z§,2°(T))}
= 2h(z§,z°(T))[(a§, zo) + (af,&(T))],

where
(3.22) (a5, a1) € Oh(zg,z°(T)).

Next, we have

T
(3.23) 20%(T) - 2*(T) = [ [fO(r.z5(r), us(r)) - f2(r,2(r), us(r))] dr
0
T
= [[f°(r,zi(r),u%(r)) = fO(r,25(r), u(r))] dr
0

T
+p [ ARA(r)dr + ofp),
0

and similarly,

T
(3:24) yi(T)-v*(T) = [ lo(r,(r), u(r)) — g(r,2%(r), u(r))] dr
0

T
+p [ Ag(r)dr+ ofp).
0

Thus, in the case
(3.25) da(e)(z2°(T)) > 0, for some sequence p | 0,

we have

(3-26) m’{ dr)(e)("’g"(T))z ; dn(e)(zo"(T))z + y;(T)2 ; yc(T)z }

plo
zp(T) — 2%(T)
p

— e 0,e
= 1;{!01{ 2dq(e)(z™%(T))

y5(T) — y*(T)
p

+ 2y%(T)
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= 2Tim{da((=*4(T))
y fT £O(r, z5(r), u(r)) = f(r, 24 () w(r)

T r,zé(r), ué(r)) — r,z‘r,u‘r’
() LRI =S
()

_ T T
+2{dao( (D) [ AL dr+v°(T) [ Agdr)ar}

T
<2 l;}g -{[dﬂ(c)(zo “(T)S(r,z5(r), u¥(r))
0
+ y*(T)g(r, z5(r), u(r))] = [daaey(z*(T)) f(r, 2%(7), u(r))
+ y*(T)g(r, 2°(r), u*(r))]} dr

T
+2 [ {dae) (@ (T))AL(r) + y*(T) Age(r)} dr
0

T
<2 [ {(55(r), £(r)) + da G (T)ASAr) + v*(T) Age(r)} dr,
0

where

(3-27) be(r) E az[df)(e)(zo’t(T))fo(r’ ze(r)’ “e(r))
+ ¥*(T)g(r, z°(r), v*(r))]
C dr)(e)(xo’c(T))arfo(r’ze(r)a u(r))
+ y°(T)0:9(r,2%(r),u%(r)) a.e.r€[0,T].
In case (3.25) fails, the above calculation is still valid since the terms con-

taining dg(.)(2%(T)) simply vanish. Hence, we see from (3.18), (3.21) and
(3.26) that

(3.28) - Ve(|zol|* + T?)!/?

1 € € € €
< F,(mﬁ,u‘(-)){h(xo’z (T))[(G’O’ $0> + (aI’EE(T))]

T
+ [15(r), &(r) + daage (2*(T))AS2(r) + y*(T) Age(r)] dr}
0

= ('/)57 zO) + (d’f’fe(T)) + ¢°"

s« Jo Lb(r), €r)) + daago (=" (TNASAT) + v*(T)Age(r)] dr.
(dae)(z2<(T))? + y*(T)?)1/2
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where
€ _ h(z‘, -’5’(T))a‘
(3.29) Yo = Fc(()a:ﬁ,ut(.))o’
€ _ h(z§,z%(T))a§
(330 ¥i= F,(()zs, u=(.))1’
(3.31) WO = (dage)(z2(T))? + y*(T)?)*/2

F,(:tﬁ, ue(.))
and the convention g- = 0 is taken. By our assumption, we know that

(3.32) 95l + |9il%k- + ()

_ h(, 2(T)) (a8 k- + lal-) + dogey(e™*(T))? + y*(T)?
F(a$, u ()

> §2,
Ve > 0.

Now, define

T
(3:33)  ¢* = [{(r(r),&(r)) + o§ASO(r) + 0§ Age(r)} dr,
0

with
c_ da(e)(224(T))
(3.34) Og = [dn(,)(zo'f(T))z T+ (TP >0,
e _ y*(T)
B3 A= gy @ 2%
b(r)

(330) 7= @ @D + @R

€ 0z[o§ f°(r,2°(r), u(r)) + ofg(r, 2°(r), u*(r))).
We note that
(3.37) (@) + (o) =1, [(r)| <L, ae rel0,T].

Thus, for some subsequences, one has

(3.38) 0§ =00, 0of—a, T()>7().
Also, we know that (from (3.9) and (3.20))

(3.39) €c(t) — &(t), uniformly in t € [0,T),
with

(3.40) £(t) =ettzo + [ AT fo(r,3(r), W(r))E(r) dr
1]
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t
+ fe“("'")Af(r) dr, te€[0,T),
0

with
(3.41) Af(r) = f(r,z(r),u(r)) — f(r,z(r),u(r)), a.e.re€[0,T),

and
Af2(r) = Afo(r) = fOr,Z(r), u(r)) — fO(r,Z(r), U(r)),
a.e. r €[0,T1],

Age(r) — Ag(r) = g(r,2(r), u(r)) — 9(r,%(r), u(r)),
a.e. r€[0,7T).

(3.42)

Then we have
T

(3.43) 0° = [{(1(r),E(r)) + 00 AF(r) + 014G.(r)} dr =
0

with (note the upper semicontinuity of the generalized gradient)
(3.44) ol+ad=1,

(3.45) (r) € 8:[o0 fO(r,Z(7), u(r)) + 019(r, Z(r), u(r))], a.e.r € [0,T).

On the other hand, by (3.22) and the upper semicontinuity of dh(-,-), we
have '

(346) (#5200 + (¥ :1) SO(E),  V(20,21) € Ta(F0,E(T)),
with the O(e) being uniform for (2o, 2;) in bounded sets. Thus, we obtain
(347) (96,20 — 20) + (¥5,&(T) — 21) + $™°¢° > — 6. =0 (e - 0).

Then, by our assumption and as in [11, 13], we can find some subsequence
of (¥§, ¥§, ¥%) (still denoted by the same symbol) such that

(348) ¢5 _".'QZ’O’ ¢f _.’ J’l’ '¢’0'£ - "Z’os
with
(3.49) %ol + lal%- + (¥°)* > 0.

Then we obtain
(3.50) 0 < (o, To) + (1, E(T)) P

T
= ('ZO, -’Bo) + <"Z1, G(T, 0)30 + f G(T, T)Af(’l‘) d1‘>
0

T
+9° [ {{(7(r),&(r)) + 0 A(r) + 01 Age(r)} dr.
0
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We set

T
(3.51) (1) = e T-IY(T)+ [ 47D fo(r,2(r), u(r))"§(r) dr

T
+¢° [ A U=Oy(r)dr, te(0,T],
t

with
(3.52) W(T)=-¢, ¢°=-9¢°<0.
Then we have

T
(353)  $(1) = G(T,)*¥(T) + o [ G(r,t)*y(r)dr, t€[0,T].

Hence, from (3.50), by some straightforward calculation (see also [13]), we
obtain

(3'54) 0 _>_ (¢(T)vE(T)) - (7/—’0’30) + ¢0‘P
T
= [ {(¥(r), Af(r)) + ¥°lo0AS(r) + 01 44(r)]} dr
0

+ (¥(0) — vo, xo).

Then we see that

(3.55) ¥(0) = %o,

T
(3.56) J {@(r), Af(r)) + ¥°[00 AP (r) + 01 4(7)]} dr < 0.

0
Now, set
{ ',Z'o = ¢0001
(3.57) @0 = 900y,
y(r) = ¥O%(r), r€]0,T].

Then we see that
(3’58) (d’(')’ ,&0, ('50) # Os
(3.59) ¥°,¢° <0,

(3.60)  4(r) € B:[¥°fO(r, 2(r), u(r)) + ¢ g(r, E(r), u(r))),
a.e. v €[0,T).
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Thus (3.51) reads

T
(3.61)  o(t) = e T-0y(T) + f eA (Tt (r)dr, Vte[0,T),
¢

v(r) € 8- H(r,#(r), (r), ¥(r),¥°, &%), a.e.r€]0,T).

Dropping the °, we obtain (2.16)—(2.19). Noting the relation (3.55) and
(3.46), we see that

(3.62) (=¥(0),20) + (¥(T),z1) <0, V(20,21) € Tr(Z0,Z(T)).
Hence the transversality condition (2.20) follows.
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