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Let I = [0, 1] be the unit interval. If we are given a function f: I — I,
then we may form the iterates ™ of f and study the properties of the se-
quence f"(z) for x € I. THis is an important problem in the theory of equa-
tions and for many applications. However, it may happen that instead
of the exact value of f at # we know only the probability distribution of
this value. In the present paper we define iterates of such functions and
give some simple results on the behaviour of these iterates.

In the sequel, B denotes the o-algebra of the Borel subsets of I; and,
for any o-algebras S, and S,, the s-algebra generated by the sets 8; X S,
S,e8,, 8,€8,, is denoted by S,xS,.

1. We define a random-valued function (shortly, an rv-function)
a8 a function f: I x 2 — I, where (2, S, P) is a probability space, such
that for every set B € B we have f~!(B) e BXS.

Thus an rv-function is a measurable stochastic process for which
the state space coincides with the time interval. For every fixed z €I,
f(z) = f(z, -) is a random variable on the space 2 of elementary events,
with values in I.

Let #(x|-) given by

(1) F(x|t) =P[f(2) < 1]

be the probability distribution of f(x).
LEMMA 1. For every fized t, the function & (-|t) 18 Borel measurable.

Proof. It is enough to prove that for every set A e BXS the function ¢
defined by

p(@) = P(4,),

where A, = {w e Q: (z, w) € A}, is Borel measurable. But this follows
from the Fubini theorem (cf., e.g., [3], Theorem 35.A).
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An rv-function is called continuous at x, eI if z — x, implies that
flz) - f(z,) in law, i.e., F (x|t) > F (,|t) at every point ¢ at which F (x,|-)
is continuous. f is called continuous if it is continuous at every point » € I.

LeMMA 2. If f is a continuous rv-function, with the probability distri-

bution (1), and A is a continuous real function on I, then the function a,
a(@) = [A(y)d, #(zy),

18 continuous in I (1).

This follows from the fact that the convergence in law is equivalent
to the weak convergence.

Now let ¢ and f be two rv-functions with the underlying probability
spaces (2., S,,P;) and (Q,, S,, P,), and with the probability distribu-
tions

(2) Y(x|t) =P[gx)<t] and F(z]t) =P,[f(2)<1],

respectively. We define the composition fog to be the function
fog: IX 2, x 2,1

defined by

(3) (fog)(®y @y, w,) =f(g(:v,w1), wz)-

LemMmA 3. The composition fog i8 rv.function with the wunderlying
probability space (2, X 2y, S;XS;, P,XP,).
Proof. We shall prove that for every set B € B we have

(fog)~*(B) e BXS,;x8S,.
Define the function G: I x 2,x 2, - I x 2, by
G(z, 01, ®,) = (g(wy @), wz) = (g X i) (2, w1,y w,),

where i: 2, — Q, is the identity. Thus fog = fo@, where the second
circle denotes the usual superposition of mappings. Hence

(fog)™(B) = &'(f7(B)),
and the lemma will be proved when we show that
(4) G~ '(4) e BxS,xS,

for every set A e BXS,. Let A be the class of all those sets A = I x 2,
for which (4) holds. Then, clearly, A4 is a o-algebra. Moreover, if A = Bx 8
with BeB and 8§ € S,, then

G '(A) = (gxi)~'(4) = ¢g7'(B) x § e BxS,x8S,.

(1) Unless otherwise indica.ted, the integration always extends over I.



ITERATION OF RANDOM FUNCTIONS 265

Hence A contains all sets of the form B x 8 with BeB and S € S,,
whence BXS,; < A, which was to be proved.

Observe that the composition of rv-functions defined by (3) is asso-
ciative.

LeEMMA 4. If g and f .are rv-functions with the underlying probability
spaces (£2,, S,, P,) and (2,, S,, P;), and with the probability distributions (2),
then the composition fog has the probability distribution given by

(5) (PXPy)[(fog)(2) < t] = [F(y10)d, 9 (x]y).
Proof. With a fixed # € I and real ¢ write
A = (0, 0,) € 2, X 2,: flg(@, 0,), wg) < )
and
A, = {ws € 2;: (0, wp) € 4}.
By the Fubini theorem we have

(PXPy)(4) = [Py(4,,)dP; = [F(g(z, »,)|1)dP,.

Now Theorem 39.C in [3] yields
(PXP,)(4) = [#(y[)d,(Prog " (w, ) = [F(y11)d,9(x]y),

which was to be proved.
The iterates f” of an rv-function f are defined by the recurrence

=7 " =foft =f"of (n =1,2,...).
Lemma 4 implies that the distribution functions #™ of the iterates f
of an rv-function with distribution (1) are given by

Fl(x|t) =F (2]1),
(6)

Frilelt) = [F(yI1)d, Fraly)= [F yI0d, Fl@ly) (n=1,2,...).

2. If f: I - I is a continuous real function fulfilling the inequality
f(z) < x for x € (0, 1], then, for every z e I, the sequence f"(z) tends to
zero (cf. [4], Theorem 0.4). Now we are going to extend this result to the
case of random-valued functions.

Let f be an rv-function with distribution (1). Let m(x),

(7) m(z) = B[f(®)] = [td, # (=]1),
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be the mean of f(x), and &(z|-),
(8) ®(z|s) = Elexp(—sf(2))] = [exp(—st)d,F (x]1) (8>0),

be the Laplace transform of f(x).

THEOREM 1. Let f be a continuous rv-function with distribution (1),

and let any of the following three conditions be fulfilled:
(i) F(x|x) =1 for x€(0,1];

(ii) D(x|8) > e % for z €(0,1] and s > 0;

(iii) m(x) < x for © €(0,1].

Then, for every x € I, the sequence f*(x) converges in law to zero.

Before proceeding with the proof, we shall show the following

LeMMA 5. For any v-function f, condition (i) implies both (ii) and (iii).
Condition (ii) implies

(iv) m(z) < @ for v (0, 1].

Proof. Fix an = €(0,1]. Condition (i) and the left continuity of
& (x|-) yield the existence of a point ¢, € (0, #) such that

(9) F(x|t;) > 0.
Now for any s > 0 we have

D(z|s) = [exp(—st)d, F(x|t)

[0,x]

= fexp(——st)d,.ﬁ"(wlt)—i— fexp(—st)d,ﬂ'(w]t)
[0:‘:0:) [‘zﬂ)

> exp( — 8t,)F (#|t,) + exp ( — s2) (1 —F (@ ,)),

whence (ii) follows in view of (9). Inequality (iii) may be obtained in an
analogous way.
Now, inequality (ii) implies that, with a fixed x € (0, 1],

1 1
(10) < (P(w]8)—1) > ;(e‘”—l) (s> 0).
Letting s — 0 in (10) we get
_4 o =
—m(x) = ds (z]8) 0™ )
which is equivalent to (iv).

Proof of Theorem 1. It follows from the continuity of f and
from any of conditions (i)-(iii) that f(0) is concentrated at zero, i.e.,

P[f(0) =0] =1,
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which implies that, for every =, f*(0) = 0 with probability 1. Thus it
is enough to prove the converyence f"(x) -0 for x e (0,1]. Further,
by Lemma 5, we need to consider only cases (ii) and (iii).

(ii) Let &, (x|-),
,(z]s) = [e~d, F" (@lt),
be the Laplace transform of f"(z). By (6) we have
Dpyi(@)8) = [ 674, [F(yIt)d, F"(aly).

In virtue of Theorem 10.2 in [7], Chapter XI, and of Lemma 1
we get

G, (z18) = [([e"aZ (y11)d, F"(@ly) = [ B(yI9)d,F"(2]y),

whence
(11) D,,.,(@]8) = @, (z|8) + [ (D(yls) —e~*)d, F"(z|y).

Condition (ii) and Lemma 2 yield the inequality @(y|s) > e¢~*¥ for
yel, s >0, thus we infer from (11) that the sequence @, (x|s) is in-
creasing, and hence convergent. By the continuity theorem ([2], Chap-
ter XIIT) the sequence of random variables f"(x) tends in law to a random
variable f,(x) with a distribution &#,(z|-). Letting n — oo in (11), we get,
in virtue of the continuity of &(-|s) (Lemma 2),

(12) [(@(y18)—e)d, #y(z1y) = 0.
Now, (12) and (ii) imply that
0 for t<0O,

13 Folz|t) =
(13) o(219) 1 for¢>0,

i.e., fo(x) = 0 with probability 1. This completes the proof in case (ii).
(iii) Let m,(x),

(14) m, (@) = B[f*(2)] = [td4,#"(x]1),

be the mean of f"(z). By an argument similar as in case (ii) we arrive at
the relation

(15) My (@) = my(2) — [ (y —m(y))d, #*(z1y),

which implies the monotonicity, and hence the convergence of the sequence
m,(z). Now, by Helly’s theorem [7], from every subsequence " (z|-)
of #™(x|-) we may choose a subsubsequence & *(x|-) which converges
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weakly to a probability distribution #y(x{-) (which a priori may depend
on the subsequence 7). Replacing in (15) n by =, and letting I — oo we
obtain

[(y—m@)d, Zo(@ly) = 0.

From (iii) it follows that Fy(x|-) must be of form (13) and, conse-
quently, is independent of the particular sequence n,. Thus the sequence
F"(x|-) must itself converge weakly to #,(x|-) given by (13), which com-
pletes the proof.

3. The n-th iterate f"(r) is a random variable on the probability
space (£2", 8", P"). However, all those product spaces may be embedded
in the infinite product (2%, §=, P®) (cf. [3], Theorem 38.B), and the func-
tions f" can be extended, in a natural way, onto I x Q% by putting

-~

T @y @1y coy 0gy..) =@y 01y ..y @)
Thus f"(x) may be regarded as a Markov chain of random variables
on the same probability space (2%, S%, P®).
Denote by F, the c-algebra of sets 4 € S which are of the form
(16) A=4,x X @,

t=n+1

where A, € S" and Q;, = Q for ¢ =n+1,... Clearly, F, c F, _,.

LEMMA 6. If f is an rv-function, then mean (7) is Borel measurable.

This follows from the Fubini theorem (cf., e.g., [6], Chapter IT,
Theorem 14, and [7], Chapter VIII, Theorem 7.1).

LeMMA 7. The conditional expectation of f”“(w) with respect to F,
i8 given by

E[f"*'(2)|F,] = mo(f*(z)).

Proof. It follows from Lemma 6 that mo(f"(z)) is measurable F,.

Further, for any set A € F, (cf. (16)),

[m(f*(@, 01, 03, ...))dP® = [m(f*(@, &, ..., ®,))dP"
4 Ay

=fff(f"(m, wl,...,wn),w)deP" = fan(a’,wla---’wmwn“)dP”H
4, 9

ApxQ

= ff"+1(w7 Wy @y, ...) AP,
A

which completes the proof.

Lemma 7 allows us to improve the convergence occurring in Theorem 1.
Namely, we have the following

THEOREM 2. If f is an rv-function with mean (7) and if m(r) <z
for z € I, then, for every x € I, the sequence f" (x) converges with probability 1.
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Proof. In view of Lemma 7 we have
E[f" (2)|F,]< f*(z),
i.e., the sequence f"(x) is a supermartingale. Similarly as in the proof of
Theorem 1 we arrive at formula (15) which shows that the sequence of

means (14) is decreasing, and hence bounded. Thus Theorem 2 follows
from the theorem on the convergence of supermartingales (cf. [5], p. 393).

Note that without assuming the continuity of f the sequence f™ need
not converge to zero. However, Theorems 1 and 2 imply, in view of Lemma 5,
the following

THEOREM 3. Under assumptions of Theorem 1, for every x €I the
sequence f"(x) converges to 0 with probability 1.

Remarks. The weak convergence of the sequence F"(x|-) in the
proof of Theorem 1 results immediately from Theorem 2. But the direct
argument given there is almost so simple, and does not rely on the deep
martingale theorem.

There are also possible other interpretations of the notions and
results presented above. Distribution (1) may be interpreted as the transi-
tion probability from the state x to the interval ( — oo, ?); and f™ become
iterates of the transition operator (cf. [1] and [2]).

The problem of iteration of rv-functions is different from that of
stochastic approximation (cf. [8]). The latter consists in the investigation
of the convergence of sequences of random variables X, given by the
recurrent relation X, ., = f(X,), where, however, the shape of the function f
is known. In our case we do not know the exact form of the function f
either.

The authors are indebted to Mr. C. Ferens for his interesting discus-
sions and valuable remarks.
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