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A direct proof of the nonexistence of faithful unimodular represen-
tations of order two over arbitrary domains for the Klein bottle group ‘is
given. Countably many inequivalent faithful representations of order two for
that group over monogenic ring extensions of the ring Z of rational integers
and over fields of prime characteristic are constructed. A simple proof of the
nonexistence of subgroups of GL(2, Z) isomorphic to Z@Z is also given.

1. Faithful integral representations. Let K be the fundamental group of
the Klein bottle. We recall that K has a presentation given by two genera-
tors a, b and the relation abab™! = 1. Let ¢ be the homomorphism of the
additive group Z of rational integers onto Aut(Z) that maps the integer 1
onto the automorphism —1 of Z. Then K is isomorphic to the semidirect
product Z x,Z.

By [1] (cf. also [4] and [2], Part 2, p. 157) one knows that every
polycyclic group has a faithful representation in SL(n, Z) for some n. For K
one has, e.g., the faithful representation

(—1F 0 r
(-1l 0 1 s
0 0 1

in SL(3, Z). The question then arises as to whether three is the least possible
order for faithful integral representations of K. The following result settles
that question in a direct fashion:

THEOREM 1. There are no faithful representations of K of order two over
the rational integers.

Proof. Assume there are matrices

a=(€ 3) and ,B=Cc 3;)

in GL(2, Z) such that af = fa~!, and let 6 = det(a). If 6 = 1, we obtain
q(x+w)=r(x+w)=0. If x+w =0, then p2 = +1I, where I is the identity
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matrix; and if x+w # 0, then «a = +1. Hence 6 = — 1, but then (p+5s)(x+w)
=0, so that either > = +1 or p* = +1I.

CoROLLARY. There are no faithful representations-of K in SL(2, R) for
any domain R of any characteristic.

Remark. In Section 3 we shall give a simple proof of the nonexistence
of faithful representations of Z@Z of order two over the rational integers.
Theorem 1 then results as an immediate consequence, but the proof given
above is shorter. In addition, the Corollary holds for arbitrary domains.

Let R[T] be the ring of polynomials in the indeterminate T with
coefficients in a domain R, W an element of R that is neither zero nor a unit,
(WT—-1) the ideal in R[T] generated by the polynomial WT-1, and
R[W™1] the quotient ring R[T])/(WT-1).

THEOREM 2. Let w be an integer such that |w| = 2. Then K has countably
many inequivalent faithful representations of order two over S =Z[w™']. A
fortiori, K has countably many inequivalent faithful rational representations of
order two.

Proof. Let 4 and v be nonzero integers and M (u, v) the subgroup of
GL(2, S) generated by the matrices

w0 0 w
o= (O w"‘) and ﬂ_(w" 0).
Then afaf~! = I, and the induced mapping of K onto M(u, v) is injective.
Alternatively, let x be a positive integer and let y and z be nonnegative

integers such that x2—yz =1 and either y # 0 or z # 0. Let T be a nonzero
integer and N(x, y, z, 1) the subgroup of GL(2, S) generated by the matrices

A=(x y) and B=(W 0).
zZ X 0 —w'

Then ABAB™! =1, and as A" is not a diagonal matrix unless r = 0, the
induced mapping of K onto N(x, y, z, 1) is injective.

CoROLLARY. There are countably many inequivalent faithful representa-
tions of K in SL(3, S), and a fortiori in SL(3, Q), where Q is the rational field.

2. Faithful modular representations. If S is a domain of nonzero charac-
teristic and K is a subgroup of GL(2, S), then obviously the transcendence
degree of S over the prime field must be at least one. The first construction
of Theorem 2 has the following modular analog:

THEOREM 3. Let p be any prime number, and X a transcendental over
Z/pZ. Then K has countably many inequivalent faithful representations of
order two over S =(Z/pZ)[X, X ']. A fortiori K has countably many
inequivalent faithful representations of order two over the function field
F =(Z/pZ)(X).
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CoROLLARY. There are countably many inequivalent faithful representa-
tions of K in SL(3, S), and a fortiori in SL(3, F).

We shall now modify the second construction of Theorem 2 to exhibit
other faithful representations of K of order two over fields of odd character-
istic. .

THEOREM 4. Let p be an odd prime, X a transcendental over Z/pZ, Y an
element in the algebraic closure of (Z/pZ)(X) such that Y?> = X*>—1, and W an
element of R =(Z/pZ)[X, Y] not in Z/pZ. Then K has countably many
inequivalent faithful representations of order two over S = R[W™']. A fortio-
ri, K has countably many inequivalent faithful representations of order two
over the function field F =(Z/pZ)(X, Y).

Proof. Consider the subgroup of GL(2, S) generated by the matrices

X Y w: 0
= d B=
& (Y x) an (0 —W')’
where 1 is a nonzero integer. Then ABAB~! = I, and for the injectivity we
need only to prove that A" is not a diagonal matrix unless r = 0. For this

purpose we set
1 1
d _(T —T)’

where Z denotes the canonical image of zeZ in Z/pZ, and verify that

X+Y 0)

P 1 AP = .
( 0 X-Y

If r >0, it follows that

where
E=2"1[(X+Y)+(X=Y)] and n=2"'[(X+4+Yy—(X-Y)].

A computation shows that

=y BT () () e

if r=2r, and

erfi B () e

fr=2r'+1.1In elther case the coefficient of X"~ ! is 271, and the assump-
tion that n = 0 leads to a contradiction.
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CoOROLLARY. There are countably many inequivalent faithful representa-
tions of K in SL(3, S), and a fortiori in SL(3, F).

Remark. The proof can be shortened by taking Wto be a transcenden-
tal over F, but the resulting representation will then have coefficients in a
field of transcendence degree two over Z/pZ.

3. The rank of GL(2, Z). Our purpose in this section is to show by
elementary means that GL(2, Z) does not contain any subgroup isomorphic
to Z@Z. Let R be any commutative ring with identity. If A is any matrix of
order two over R, we call

A4A = (tr A)*—4-det A

the discriminant of A. Our basic device is the following result on the
spectrum of commuting opesators on the R-module R®R.

LEMMA. Let R be as above and let

A=<p q) and B=(x y)
r s z w
he two commuting matrices over R. (Neither A nor B need be invertible.) Then
z2AA =r* 4AB.

Proof. Since AB=BA, we have ry=qz and (p—s)z=r(x—w). A
straightforward verification then yields the Lemma.

THEOREM 5. There are no faithful representations of Z®Z of order two
over the rational integers.

Proof. Let g and g’ be generators of Z@Z and let ¢ be a monomor-

phism of Z®Z into GL(2, Z). Over the complex field C, ¢(g) is similar to
exactly one of the following matrices:

. A0

(1) ( 0 /1) for some AeC;

.. A 1\ .

(ii) ( 0 l) for some AeC;

A0 )

(i) (0 ”) for some A, ueC, with 4 # pu.

If J is any one of these matrices, then detJ = +1 and trJeZ, so that 4
= +1 in cases (i) and (ii). Since g(g) generates an infinite cyclic group in
GL(2, Z), case (i) cannot occur. Suppose ¢(g) is similar to a matrix of type
(i1). Then there exists a matrix U with integer coefficients and nonzero
determinant such that g(g) = U 'o(g)U is a matrix of that type. Now
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0(g')Y commutes with g(g)?, and det o(g')? = +1 and tro(g’)V € Z. Therefore,

’ _ € v
e(g)”—(o 8),

where ¢ = +1 and y is a rational number, which implies that ¢ is not
injective. Hence there exists Ve GL(2, C) such that D = ¢(g)" is a matrix of
type (iii), and an analogous reasoning shows that D' = o(g')¥ is of the same

type. If
, pl '
e(g)=(” q) and e(g)=(, ",),
r S r S

this implies that r # 0 and ' # 0.

Now set D = diag(4, u) and D’ = diag(4, i). Since Au = +1 and A+u
=neZ, A and u are roots of X2—nX +1 = 0. If we set d = n>F4, it follows
that A and u are units of the field Q(\/E), where Q is the rational field.
Analogously, from A’y = +1 and A'+u =n'eZ we see that ' and u' are
units of Q(./d’), where d’ = W2F4. By our Lemma, Q(/d) = Q(\/?). Now
the mapping diag(v, +v~')—(v, +1) is an isomorphism of the group gen-
erated by D and D’ onto a subgroup of U(d)®(Z/2Z), where U (d) is the
group of units of Q(\/E). But U(d) is either finite or isomorphic to
Z®(Z/2Z) (cf., e.g., [3], p. 76); hence the subgroup of GL(2, Z) generated by
0(g) and ¢(g) cannot be isomorphic to ZDZ.
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