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BY

0. A. S. KARAMZADEH (AHVAZ)

Cukerman [2], Shanny [5], and Ware [7] have shown that a ring R
is Artin semisimple if and only if R has a nonfinitely generated free module
with regular endomorphism ring. This answers a question raised in [6].
In an easy way we prove a stronger result and as a corollary we get the
afore-mentioned theorem. Artinian projective modules need not be Noethe-
rian (see [3]) but we give a class of projective modules for which this is
true. Zelmanowitz [8] calls a module regular if every cyclic submodule is
a projective direct summand. We observe some properties of modules
whose cyclic submodules are merely direct summands. _

Throughout this paper all rings are associative with a unity and
modules are unitary right modules. A module has a finite uniform dimension
if it contains no infinite direct sum of submodules. A ring R is called
regular if given a € R there exists a’ € B such that ¢ = aa’a, and R is
called right self-injective if it is injective as a right R-module. An R-module
M is called quasi-injective if, given any R-submodule N of M and a homo-
morphism f: N — M, f can be extended to a homomorphism f: M — M.
It is well known that if M is a quasi-injective B-module and H = Endg (M),
then H/J(H) is a regular, right self-injective ring, where J(H) denotes
the Jacobson radical of H.

Definition 1. An R-module M is called regular if every cyclic
R-submodule of M is a direct summand.

Projective modules over regular rings, every right ideal in a regular
ring, and semisimple modules are some examples of regular modules.
The following two lemmas are stated in [8].

LEMMA 1. If M 48 a regular R-module, then every finitely generated
R-submodule of M 18 a direct summand.

Proof. Let {z,, ..., z,} be a minimal set of generators of a submodule
N of M. Proceed by induction on n. For n = 1 the assertion follows from



144 o 0. A.'8. KARAMZADEH

the definition. Let us assume that it is also true for submodules generated
by less than n elements. Since z,R is a direct summand of M, there
exists a homomorphism 6,: M — N such that 6,(z,) = z,. Let us set
Y =2;—0,(2), ¢ =1,...,n. Wenotethaty, = 0. Then by the induction
hypothesis there exists a homomorphism 6': M — N such that 6'(y;)
=19, t=1,...,n Now define 6: M - N by 6 = 6,+ 6'(1—6,). Clearly,
6(x;) = x; and, therefore, the sequence 0 — N — M splits.

LEMMA 2. Every countably generated regqular R-module is a direct
sum of cyclic submodules.

The proof goes by an easy induction (see [8]).

COROLLARY 1. If M is a regular module with a finite uniform dimension,
then M s a finite direct sum of simple submodules.

Proof. We note that every submodule is regular. Therefore, by
Lemma 2, every submodule must be finitely generated, and hence is
a direct summand. Thus M is semisimple, and since it has a finite uniform
dimension, the proof is completed.

The following gives a converse to Schur’s lemma.

ProrosiTION 1. If M is a regular R-module such that H = Endgy(M)
i8 a division ring, then M must be a simple R-module.

Proof. It is sufficient to show that mRE = M for each m € M (m +# 0).
Now take m € M (m # 0). Then, since M is regular, there is a projection
p: M —mR. Therefore, if 4: mR — M is a natural inclusion, then
0 #4p e H. By the assumption on H, i¢p is an isomorphism, whence
M = Im(ip) = mR, which completes the proof.

PRrROPOSITION 2. If every imjective R-module is regular, then R is Artin
semisimple.

Proof. We note that every cyclic R-module is injective as a direct
summand of its injective envelope. Now apply Osofsky’s result [4].

We also observe the following properties of regular modules.

Remark 1. If M is a reqular R-module, then J(M) = 0.

To see this we show that given any z € M (z # 0) there exists a
maximal submodule not containing x. Since M is regular, we have M
= sRPP for some submodule P. Now, an easy application of Zorn’s
lemma shows that there exists a submodule N of M maximal with respect
to the property that N = P, x ¢ N. But, clearly, N is a maximal submodule.
We also observe that if M is a regular faithful R-module, then MJ (R)
c J (M) implies J(R) = 0. Hence the annihilator of M in R is an inter-
section of maximal right ideals.

Next we characterize modules whose countably generated submodules

are direct summands.
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LEMMA 3. If every countably generated submodule of an R-module M
28 finitely generated, then M is Noetherian.

Proof. It is sufficient to show that M has acc on finitely generated
submodules. Let N, = ...c N, < ... be an infinite ascending chain of
finitely generated submodules. Then |_) N, is a countably generated sub-

i=1
module which must be finitely generated, so the chain terminates.
COROLLARY 2. If M is an R-module whose countably generated sub-
modules are direct summands, then M 18 semisimple.
Proof. Let N be a finitely generated submodule of M. Clearly,
every countably generated submodule of N is a direct summand of N.
Now, by Lemma 3, N is Noetherian. Since N is also regular, it is semisimple.

But M = > xR shows that M is a sum of simple submodules, i.e. M is
xeM
semisimple.

Definition 2. An R-module M is said to be a C-module if, given
any countably generated submodule N, there exists an epimorphism
f: M - N.

Infinitely generated free R-modules and semisimple modules are
C-modules. There exists also a projective C-module which is neither free
nor semisimple. Indeed, let F' be a nonfinitely generated free R-module
and suppose R’ is a ring not isomorphic to R. Put A = R X R’. Then F
becomes in a natural way an A-module, and it is clear that F is a projective

C-module over A.

It is well known that an Artinian projective module cannot be Noethe-
rian (see [3]). But we have the following

PROPOSITION 3. Artinian projective C-modules are Noetherian.

Proof. Suppose M is an Artinian projective C-module. It is well
known that an Artinian projective module is finitely generated (see [3]).
Now Lemma 3 completes the proof.

Definition 3. Let M be an R-module and H = Endgz(M). Then

A = {f e H: Imf is contained in a countably generated submodule of MM}

is an ideal of H called the ideal of endomorphisms of countable rank.

THEOREM. If M i8 a C-module whose ideal of endomorphisms of count-
able rank i8 a regular ring, then M 1is semisimple.

Proof. Let N be a countably generated submodule of M. Then there
exists an epimorphism M > N — 0. Now, there exists g: M - M such
that f = fgf, so fg: M — N splits the sequence 0 — N — M. Thus every
countably generated submodule of M is a direct summand and the Theorem
follows by Corollary 2.
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Remark 2. Bass [1] has shown that infinitely generated projective
modules tend to be free. This roughly means that, as a projective module
becomes greater, free summands tend to appear.

COROLLARY 3. Let M be a C-module over a ring R. If the ideal of endo-
morphisms of M of countable rank is a reqular ring and M has a montrivial
free direct summand, then R is Artin semisimple.

Definition 4. An R-module M is called nonsingular if
Z(M) ={X <« M: Ann(X) is an essential right ideal} = 0.

COROLLARY 4. If P is a nonsingular C-module over R such that H
= Endg(P) is a right self-injective ring, then P is semisimple.

Proof. Since the endomorphism ring of a nonsingular quasi-injective
module is a self-injective regular ring, it is sufficient to show that P is
quasi-injective. So let N be a submodule of P and suppose f: N — P is
a homomorphism. We must show that f can be extended to an element
f €eH. Put A =Homgx(P,N). Then A is a right ideal of H. Now we
consider a homomorphism 6: A — H defined by 6(a) = fa for all a € A.
Since H is a right self-injective ring, 6 can be extended to 6': H -~ H.
Therefore, if we put 6'(1) = f’, then 6’ (a) = f'a= fa for all « € A. We now
claim that f’ extends to f. Indeed, if 0 # x is any element of N, then
there exists h € A such that h(P) = zR. Therefore, there exists m € P
such that h(m) = x. Now f'(z) = f'(h(m)) = f'h(m) = fh(m) = f(w).

COROLLARY 5. If R is a nonsingular ring such that the ring of infinite
row matrices over R is right self-injective, then R must be Artin semisimple.
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