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MONOTONE RETRACTS
OF AN ARCWISE CONNECTED CONTINUUM

BY

T. MACKOWIAK (WROCLAW)

A continuwm means a non-degenerate compact connected metric
space. A continuum M is érreducible between its points p and ¢ if no proper
subcontinuum of M contains both p and ¢. A continuum M is hereditarily
unicoherent at p if the intersection of any two subcontinua containing p
is eonnected.

PrOPOSITION 1 ([1], Theorem 1.3). A continuum M is hereditarily
unicoherent at p if and only if, for any given » € M, there exists a unique
subcontinuum which is irreducible between p and .

A dendroid is an arcwise connected continuum which is hereditarily
unicoherent at every point. It is known

PrOPOSITION 2 ([2], Theorems 2.2 and 2.3; [7], Theorem 2.6). An
arcwise connected continuun M is a dendroid if and only if M is heredita-
rily unicoherent at some point p.

A subcontinuum N of a continuum M is called a monotone retract of M
if there exists a mapping r from M onto N which is both monotone and
a retraction.

THEOREM 1. Let M be an arcwise connected continuum. If each sub-
continuum of M which is irreducible between a fived point p and some other
point is a monotone retract of M, then M is a dendroid.

Proof. It suffices to show, by Proposition 2, that M is hereditarily
unicoherent at p. Observe first that

(1) If I(p,w)isa continuum in X which is irreducible between p and =,
then I(p,®) is an are.

In fact, there is a retraction r from M onto I(p, @). Since M is arcwise
connected, so is I(p, #). Therefore, there is an arc p» in I(p,») joining
points p and x. But then I(p,a)= ps by the irreducibility of I(p, #)
between p and .

(2) Every subcontinuum of M is arcwise connected.
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Indeed, let pq be an arc in M joining points p and ¢ and such that
P9NQ = {q}, where @ is an arbitrary subcontinuum of M. Take points z
and ¥y in @ and consider continua I(q, ) and I(q,y) in @ irreducible
between q and @, and ¢ and y, respectively. Sets pquUI (g, #) and pquI(q, ¥)
are irreducible between p and », and p and y, respectively. By (1), they
are arcs. Therefore, also continua I(q, ) and I(q,y) are arcs. Thus the
continuum I(q,x)UI(q,y) contains an arc zy joining # and y. But
I(q,2)VI(q,y) = @, whence zy < Q. This means that @ is an arcwise
connected continuum.

Now suppose, on the contrary, that M is not hereditarily unico-
herent at p. Then there are, by Proposition 1 and (1), a point 2z and two
different arcs 4 and B both joining points » and 2. The union Ay B con-
tains a simple closed curve S. Let pa be an arc in M joining points p and &
and such that pan8 = {a}. Take a point b in §\{a} and denote two pos-
sible ares in 8, both joining points ¢ and b, by ab and I (a, b).

The set pavab is a continuum irreducible between p and b. Thus
there is a monotone retraction r from M onto pauab. We will show that

(3) The arc I(a, b) contains an arc cd such that r(cd) is a non-degen-
erate arc r(c)r(d) contained in the set ab\{a, b} and

r~lr({e, d})ned = {e, d}.

Since ab < r(I(a, b)), we infer, using Brouwer’s reduction theorem,
that there is an arc ¢’d’ in I(a, b) which is irreducible with respect to the
property that ab < r(c¢’d’). Then

r~({a, b})nc'd’ = {¢', d'}.

Now, let a’ and b’ be two different points belonging to the set ab\ {a, b}.
Since ab < r(c¢’d’), we conclude that
r (@ )ne'd #0 and rY(b)nc'd #O.
Taking an are cd irreducible between.sets 7! (a’yne’d’ and r~1(b")ne’'d’
and contained in ¢'d’ we see that cd satisfies the required conditions.

We may assume that p <a <r(c) <r(d) <b in the natural order
of the arc pauUab from a to b, and let {z,} be a sequence of points such that

(4) limz, = r(d)
and, in the same order,
b)) rog<m<z,<...<r(d).

Since r(c)r(d) = r(ed), we infer that r~'(w,)ned G for each
n =1,2,...Scts r~!(z,) are continua and

r~!(»,)N(pavadb) = {w,} for each n =1,2,...,
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since r is a monotone retraction from M onto pauvab. Thus for each
w =1,2,... there is an arc »,y, such that

(6) @,9,n0d = {y,} and ,y, < 1~ (a,).
Since r is continuous, we obtain
(7) limy, =d.

Moreover, considering suitable subsequences of the sequence {w,}
we may assume that

(8) the sequence {»,y,} is convergent
and, in the natural order of ¢d from ¢ to d,
9) e<y<y;<...<ad.

Denote the continuum Lima,y, by K. Then, by (4), (6) and conti-
nuity of r,

(10) K < rr(d).

Now let #;@; be an arc in ab, let y,y; be an arc in ¢d for¢,j =1, 2, ...,
and let az, be an arc in ab. Put C, = a», and C, = v,2,,, if % is even
and C, = ¥,Y,,, if » is odd. From (5) and (9) we obtain

11) ¢o,nC, =9 for n #m and n,m =0,1,2,...
and, by (4) and (7),
(12) Lim0,, = r(d), LimO0,,,, =d.
Consider the set
L = pav Cj (CaVp1Ynyn)-

n=0
Since
panCy = {a} and D,1Yp1N0p # O # By 1Yy 1NOnyyy

we conclude that
(13) the set L is connected.

We have
(14) L\L =K.

Indeed, if 2 € L\ L, then

2 € Lim#,y,VLimC,,ULImC,,,, = KU {r(d)}u{d} = K
by (4), (7) and (12). Thus L\L < K. But K < L since
K = Lima,y, < L.
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Thus to prove (14) it suffices to show that KNnL =@. Since
K < r~'r(d) (cf. (10)) and r~'r(d)ned = {d} (cf. (3)), we have Kned < {d}.
Angd since r is a retraction onto pauab, we infer, by (10), that

Kn(pavad) < {r(d)}.

Thus (pavC,)NK =@ for each n =0,1,2,..., since every C,
is contained in (pavabucd)\{r(d), d} (cf. (5) and (9)). Moreover, since
2,9, < r ' (x,) and K < r~'r(d) (see (6) and (10)) and =, # r(d) by (8),
we have z,y,NK =@ for each n =1, 2, ... Therefore LNK = @.

From (13) and (14) we infer that

(16) the set LUK is a continuum containing p.

Now,
(16) if

o0
e € | UJ®,Yn,
fi=]

then the set (LUK)\{e} is the union of two connected sets U and V
such that pe U, K <« Vand UnV = {¢}.

Indeed, let ¢ € #,y, and let ex, and ey, be arcs in »,y,. Put

n-1 [}
U =pavuC,LuJ(C;uay,) and V' =KulU(Cur,,9;:,,).

i=1 i=n
If » is even, then we put
U=Uu(ey,\{e}) and V =T 'U(em,\{e}),
and if » is odd, then we set
U="Uu(ex,\{e}) and V = V'U(ey,\{e}).

The same arguments as in the proof of (13) show that sets defined
in this way are connected. Since .y, < r~'(»,) and z, # ¥,, we infer
that UNnV =@ by (11) and (14). But U = Uu{e} and ¥ = Vu{e},
thus TNV = {e}. :

Finally, we infer from (2) and (15) that there is an arc pk in LUK
such that pknK = {k}. But, by (16), {x,,y,} < pk for each n =1, 2, ...
Therefore, by (4) and (7), {d, r(d)} = pk, a contradiction, since

{d7 r(d)} < Limz,y, =K and d #r(d).

Thus the proof of Theorem 1 is completed.
Theorem 1 in this paper and Theorem 3 in [6] yield the following

COROLLARY 1. Let M be an arcwise connected continuum and let p € M 5
Then M is a dendrite if and only if each subcontinuwm of M which is irredu-
oible between p and some other point is a monotone retract of M.
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Thus, by Theorem in [3], we also have

COROLLARY 2. Let a continuum M be arcwise connected and let p € M.
Then the following conditions are equivalent:
(1) each subcontinuum of M containing p 18 a monotone retract of M;
(ii) each subcontinuum of M which is irreducible between p and some
other point is a monotone retract of M ;
(iii) each subcontinuum of M is a monotone retract of M.

Corollary 2 gives a partial solution to a problem asked in [4]: Is
it true that (i) and (ii) of Corollary 2 are equivalent for any continuum M %

THEOREM 2. Let a continuum M be arcwise connected and let p € M.
Then M 18 a dendrite if and only if each subcontinuum of M with a non-
empty interior and containing p i8 a monotone retract of M.

Proof. If M is a dendrite, then each subcontinuum of M is a retract
of M by Corollaries 1 and 2.

Suppose now that each subcontinuum of M with a non-empty interior
and containing p is a monotone retract of M. Observe first that

(17) every subcontinuum of M with a non-empty interior is a monotone
retract of M.

In fact, let @ be a subcontinuum of M with a non-empty interior
and let pq be an arc in M such that pgn@Q = {g}. Then the set pguQ is
a subcontinuum of M with a non-empty interior and containing p. There-
fore, there is a monotone retraction r from M onto pqu@. But

_Jx if e,
f(w)_{q if x €pq

is a monotone retraction from pqu@ onto ¢. Then the composition fr

is a monotone retraction from M onto Q.
Secondly, we prove that

(18) M is unicoherent.

Indeed, if M is not unicoherent, then there are subcontinua @ and R
such that ¥ = Q UR and the set @ "R is not connected. Then @ (similarly E)
is a subcontinuum of M with a non-empty interior. Therefore, by (17),.
there is a monotone retraction from M onto . Choose ¥ € r(R)\E. Then
r~1(y) is a subcontinuum which intersects Q\ R and R\Q. Consequently,.
r~1(y) meets @ NR, contradicting the fact that r is fixed in @NR.

Since the unicoherence is an invariant under monotone mappings,.
every subcontinuum of M with a non-empty interior is unicoherent by (17)
and (18). But then the arcwise connectivity of M implies (see [9], Corol-
lary 2) that

(19) M is a dendroid.
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Now we prove that

{20) if # and y are different points of M, then M is locally connected
either at x or at y.

It follows from Theorem 1 in [8] that there is a subcontinuum @
of X with a non-empty interior such that @ contains one of these points
and fails to contain the other. Say, # e Q<= M\ {y}. Suppose that M
is not locally connected at y. Then there is a closed neighbourhood F
of y such that EnQ =@, and if C is the component of ¥ in #, then y

-does not belong to its interior, y € E\C. Let
21) y =limy,, v, € E\C.

Since M is arcwise connected, there is an arc ab such that abN@Q = {a}
and abNC = {b}. Then

{22) vy e M\(abuQ).

Now, consider the continuum QuUabuC. This continuum has a non-
empty interior in M. Thus, by (17), there exists a monotone retraction r
from M onto Quabu(. Observe that

{23) r7!(y) is degenerate.

In fact, since r(2) = 2z for z € 0, we conclude that r~'(y)nC = {y}.
‘The set r~'(y) is a continuum. If it were non-degenerate, then (by The-
orem 4 in [5], § 47, III, p. 173) there would exist a non-degenerate sub-
continnum N of »~!(y) containing ¥ and contained in the interior of E,
since y belongs to the interior of B and y € r~*(y). But ¥ € C and O is a com-
ponent of E, thus N <= C. Hence N < r~!(y)nC, a contradiction.

It follows from (21) that, by the continuity of r,

(24) Limr~'r(y,) = {y}.

Since 7(y,) € QuUabUC, limr(y,) = r(y) = y by (21) and y € C\(QuUab)
by (22), we obtain r(y,) € C with an arbitrarily large ». Then

r(y,) er~'r(y,)NC.

Thus, by (24), the set r~'r(y,) with an arbitrarily large n is contained
in O, since r~'r(y,) is connected, C is a component of y in ¥, and ¥ belongs
to the interior of E. But v, € " 'r(y,) = C, which is impossible by (21).
Therefore, the proof of (20) is completed.

{25) M is locally connected.

Fix # € M. If M is not locally connected at @, then, by (20), M is locally
connected at any point y € M\ {z}. But this is impossible. Thus M is
locally connected at .

By virtue of (19) and (25), M is a dendrite.



MONOTONE RETRACTS 233

(1]
12]
3]
(4]

[5]
(6]

{71
(8]

9]

REFERENCES

G. R. Gordh, Jr., On decompositions of smooth continua, Fundamenta Mathema-
ticae 76 (1972), p. 51-60.

— Concerning closed quasi-orders on hereditarily unicoherent continua, ibidem 78
(1973), p. 61-73.

— and L. Lum, Monotone reiracts and some characterizations of dendrites, Pro-
ceedings of the American Mathematical Society 59 (1976), p. 156-158.

— On monotone reiracts, accessibility and smoothness in coniinua, Proceedings
of the Auburn Topology Conference 1976.

K. Kuratowski, Topology, Vol. II, Warszawa 1968.

L. Lum, Order preserving and monotone retracts of a dendroid, Proceedings of
the Auburn Topology Conference 19786.

T. Madkowiak, Some characterizations of smooth continua, Fundamenta Mathe-
maticae 79 (1973), p. 173-1886.

— On some characterizations of dendroids and weakly monotone mappings, Bulle-
tin de I’Académie Polonaise des Sciences, Série des sciences mathématiques,
astronomiques et physiques, 24 (1976), p. 177-182.

— Some kinds of the unicoherence, Commentationes Mathematicae 20 (1978),
p. 405-408.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCLAW

Re¢u par la Rédaction le 3. 3. 1977



