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1. Introduction. Holland, Jr. [7], p. 341, lists a number of statements
“which are true for the projection lattice of a von Neumann algebra or
for a complete complemented modular lattice — none of which, however,
is true for an arbitrary orthomodular lattice. Included therein is the
statement that the center of each interval [0, a] is the set of all 2 A a
with z central in L. During the course of an investigation of quantifiers
on an orthomodular lattice ([8], p. 100-105), we came .on this same con-
dition independently and from totally different considerations. It there-
fore seemed reasonable to initiate an investigation into the meaning of
the condition. This in turn has led us to the consideration of various
“separation” conditions of an orthomodular lattice — indeed, of an arbi-
trary relatively complemented lattice with 0 and 1.

In section 2 we discuss separation conditions in the setting of a rela-
tively complemented lattice, while in section 3 the results are specialized
to the case of an orthomodular lattice. Finally, in section 4 we discuss
the relation between the center of an interval sublattice and the center
of the entire lattice. Some of the material in sections 3 and 4 has become
part of the “folklore” of orthomodular lattice theory. We present it here
for two reasons: («) to show its relation to the separation conditions of
section 2; (B) to make it accessible for the first time to the general ma-
thematical public.

2. Separation conditions. In this section L will always denote a relati®
vely complemented lattice with 0 and 1.

Definition 2.1. Two elements e, f of L are called perspective, denoted
e ~f, in case they have a common complement in L; for each positive
integer i, they are called (i)-perspective, in symbols ¢ ~* f, in case there
exist elements e;,...,e; such that e ~e¢;, ~... ~¢ =f; finally, they
are called projective and denoted e ~ f if they are (¢)-perspective for
some positive integer i.
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Definition 2.2. (i) Let R be a binary relation on L. Two elements
e, f of L are called unrelated with respect to R if e, < e, fy < f with e, Rf,
implies ¢, = f, = 0.

(ii) For each positive integer ¢, write ¢S®f in case e, f are unrelated
with respect to (i)-perspectivity, and eS“f to denote their being unrelat-
ed with respect to projectivity. Conditions of this type will be referred
to in the sequel as separation conditions.

Notice that if ¢ < j < oo, then eSYf = eS?f. Our goal is to investi-
gate the meaning of the equivalence of some or all of the separation
conditions. Before doing so, however, we pause to consider the two extreme
conditions S and 8. In connection with this, it will prove convenient
to follow F. Maeda’s notation and write e Vfin case (eva)A f=a A f
for all xeL. We then have

THEOREM 2.3 ([9], Theorem 2, p. 2). Given e, fe L, the following condi-

tions are equivalent:
(i) eSOf;

(ii) e V f;

(iii) eve =1 =>f< x;

(iv) f 18 contdined in all complements of e;

(V) 2 =(zVve)a (zVv f) for all zeL.

In view of this we shall be using the notation eS”f and e V f syno-
nymously. Before looking at S we need some additional terminology.
If the set @(L) of congruence relations on L is partially ordered by the
rule O, <0, iff e0,f = e0,f, it is well known that O(L) becomes
a complete pseudo-complemented distributive lattice. Given a, belL,
let ©,, denote the smallest congruence relation identifying a& and b,

and for each congruence 6, let @ denote its psuedo-complement
in @(L).

THEOREM 2.4. Given e, feL, the following conditions are equivalent:

(i) e8f;

(il) f = 0(6],);

(iii) there exists a congruence relation @ such that e = 0(60) and
f=0(0%;

(iv) e ~ g = fSWg;

(v)e~g=>fAang=0.

Proof. (i) = (ii). Let # <f and # = 0(6,,). Then by [10], Theorem
4.5, x is the join of a finite number of elements, each of which is projective

to a subelement of e. Since z < f and eS8, it is immediate that « = 0,
so by [11], Theorem 4.13, p. 71, f = 0(6;,).
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(ii) = (iii). Clear.

(ili) = (iv). Let e= 0(0), f= 0(0*) and e~ g. Then g = 0(0O),
so by [11], Theorem 4.13, p. 71, gSVf.

(iv) = (v). Clear. )

(v) = (i). Let ¢; <e¢, fi <f and ¢, ~ f,. By [10], Lemma 4.1, there
exists an element g > f, with e¢ ~ ¢g. Then by (v), fA g =0 implies
fi=fiAfAg =0, thus establishing eSf.

We are now ready to begin our discussion of the various separation
axioms. The next lemma serves to clarify the relation between S and
St+1)

LEMMA 2.5. For e, feL, eS¢tV f holds iff eS¥ g for all g perspective to f.

Proof. Suppose first that eS®g for all g ~f. Let ¢, <e, f, <f and
e, ~'*Vf, . There then exists an element g, such that e, ~%g, ~fi.
Now ¢, ~ f, < f implies (see [10], Lemma 4.1) that there exists an element
g > g, such that ¢ ~ f. By hypothesis, eS¢, so we must have e, = g, = 0.
It follows that eS¢+Vf,

Suppose conversely that eS¢+)f and let f~g. If ¢, <e¢, g, < g and
e, ~"g,, then g, ~f, for some f,<f, so e, ~*Vf, and e, =f, = 0.

This leads immediately to

THEOREM 2.6. If 8® = 8C+V, then 8O = 8® for all j, k> i.

Proof. It clearly suffices to show that if S = S¢+)  then eSUf
= e8(®f. Accordingly, let e¢c<L be fixed, and say that f has property P
in case eS®f. Then if f has property P and g < f, clearly g has property P;
moreover, by Lemma 2.5, any element perspective to f will have prop-
erty P. It follows that P is a perspective property in the sense of [10].
Calling # a P-element when it has property P, we see ([10], Theorem 3.4)
that the ideal J generated by the P-elements is the kernel of a congruence
relation . Suppose z < ¢ and zeJ. Then x is the join of a finite number
of P-elements and # < e. But ¢t a P-element implies ¢ At = 0. It follows
that 2 = 0 and so ([11], Theorem 4.13, p. 71) ¢ = 0(@*). By Theorem
2.4, e8Of = 68 f ag desired.

At this point the reader may very well ask when (if ever) one has
8® =°86+Y Tt i therefore appropriate to consider some examples.

ExAMPLE 1. Let L be a complemented modular lattice. Let eS‘f,
0<e;<6,0<f,<fand e ~f. Then by [12], Lemma 9, p. 91, there
exist e,, f, such that 0 < ¢, < €, 0 < f, <f, and ¢, ~ f,, a contradiction.
It follows that eS™f, so all of the separation conditions coincide.

ExAMPLE 2. Following the terminology of Holland, Jr. [7], we agree
to call ¢ and f strongly perspective if they have a common complement
in their join. It is fairly easy to show that in the projection lattice of
a Baer *-ring 4, the following conditions are equivalent: (i) ¢ and f are
unrelated with respect to strong perspectivity; (i) eSWf; (iii) eSf;
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(iv) eAf = (0). The proof of this fact will be published elsewhere in a paper
on Baer *-rings.

ExaMpPLE 3. The lattice given in [7], p. 342, is relatively comple-
mented, but 8 does not imply 8®. (See Remark 3.6.)

Remark 2.7. Making use of Lemma 2.5, it is easy to show that
8 = 8@ g equivalent to every normal ideal (see [9]) being the kernel
of a congruence relation, hepce by [9], Theorem 8, p. 6, a central element
of the completion of L by cuts.

3. The orthomodular case. An orthomodular lattice is a lattice L with
0 and 1 possessing a unary operation a — a’ satisfying

ana =0, ava =1, (a') =a,
<b=b<d,

a<b=b=av (ba a).

These lattices have been studied in great detail in recent years.
We refer the reader to [1], p. 52-3, [4] or [7] for an introduction to the
subject. We merely remark that the projection lattice of a von Neumann
algebra, any Boolean algebra, as well as any orthocomplemented modular
lattice is orthomodular, and any orthomodular lattice is relatively com-
plemented. For the remainder of this section, L will denote an orthomodular
lattzice.

Definition 3.1. Let ¢ ~° f denote the fact that e and f are strongly
perspective in the sense that they are perspective in [0, e v f], and let
eS8©f denote the fact that they are unrelated with respect to strong
perspectivity.

In working with orthomodular lattices, the notion of commutativity
is of vital importance. Basically, e commutes with f, denoted eCf, if and
only if ¢ =(e A f)v (e A f'). The elementary properties of commuta-
tivity were established independently by Foulis [4] and Holland [6].
Essentially, one has the following: (i) e <<f = eCf; (ii) eCf = fCe;
(iii) eCf = e’Cf; (iv) the set of elements commuting with ¢ forms a sub-
lattice of L closed under the formation of orthocomplements as well as
any existing suprema or infima; (v) eCf<(ev f)Af =¢en f; (vi) e is
central if and only if eCf for all fe L. The most important single fact about

commutativity is contained in the next theorem due independently to
Foulls ([(4], Theorem 5, p. 68) and Holland ([6], Theorem 3, p. 69).

=" THEOREM 3.2 (Foulis-Holland). If any two of the three relations eCf,
fCqg and eCg hold, then tev fyng=(eAng)Vv (fag) and (enf)Vvy
=(ev g A(fvg)
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Following the terminology of Foulis [4], p. 66, we introduce the
Sasaki projection ¢;: L —~ L by the formula ep, = (e v f') A f for all eeL
and note that by [4], Lemmas 1 and 2, p. 66-67, we have: (i) ¢; = ¢;¢y;
(ii) (egy) @y=¢" A f; (iii) if \/, e, exists in L, then V (e,¢;) exists and equals
(Vatd)@s; (iv) epp=c¢ iff ¢ < f; (v) epy=0 iff ¢ L f in the sense that ¢ < f';
(vi) ep; =f iff ev f' =1; (vii) eCf iff ¢.9; = ¢y..

Remark 3.3. It is an immediate consequence of the Foulis-Holland
theorem (known both to Foulis and Holland) that every interval sub-
lattice [e,f] = {weL:e< ax<f} is itself orthomodular with respect to
the orthocomplementation

gF=(vg)nf=ev (g Af).

(See also [1], p. 53.) It is an easy matter to show that aCb iff b is the
relative orthocomplement of @ in [a A b, @ v b]. For if aCb, by the Foulis-
Holland theorem,

a¥* =[a" v (@ A b)] A (av bd)
=(a"va)an(avb)A(av b)

=(bva)a(bva')=>.

On the other hand,ifb =(aA b) v [(a vd) Aa'],thendbv a’ =(a Ab)V
va and (bv a')Aa =[(aAb)v a']A a=aAab, thereby showing bCa.

Recalling that in an arbitrary relatively complemented lattice with
0 and 1, ¢SV f < ¢ Vf, we begin our discussion of separation conditions
by investigating the V-relation in the orthomodular lattice L.

THEOREM 3.4. Given e, feL, the following conditions are equivalent:
(i) eVf;

(ii) gae =0 =>f_1 g;

(iti) f | e, for all geL;

(iv) @.p,9r = 0 for all geL.

Proof. (i) = (ii). If g A ¢’ = 0, then ¢’ v ¢ =1, so by Theorem 2.3,
f<yg.
(i) = (iii). ep, A € = (eVv g') A g A ¢ =0 implies f | ep,.

(iii) = (iv). By [4], Lemma 1, p. 66, f | e, iff ep,p; = 0 and this
clearly implies ¢ @9, = 0.

(iv) = (i). Let # be a complement of e. Then 0 = ep, ¢; = [(¢ v @) A
A 2']g; = o' p; implies o' < f’, so f<x. By Theorem 2.3, eV/.

Remark 3.5. For those having some knowledge of Baer *-semi-
groups (see [3]), the above theorem states that for two closed projections
e and f, eVf in P'(8) if and only if egf = 0 for all geP’(S).
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Remark 3.6. Consider the following separation conditions (listed in

order of implication):
(i) eS@f;

(ii) fVeg, for all xeL;

(iil) e ~ g =f | g;

(iv) e V.

In the example shown in [7], Fig. 1, p. 342, a Vg, g ~ b, but a is not
orthogonal to b. Thus a and ¢ satisfy (iv) but not (iil). It is not known
which of the other implications is strict.

We are now ready to have a look at the separation condition S
on L. Our approach will be via the theory of Sasaki projections.

LEMMA 3.7. Leta< e A f<ev f<b. Then if f¥ is the relative ortho-
.complement of f in [a, b], ep, = (e v f¥) A f.

Proof. Making use of the Foulis-Holland theorem we may write

eviHaf=levav(fablaf=[ev(fadlnaf
=(evfIan(evdD)af=(evfIAbAaf
=(ev f)Af

LEMMA 3.8. For arbitrary e, feL, ep; and fo, are perspective in the in-
terval from their meet to their join.

Proof. Let ¢ = ep; and b = fp,. By [4], Corollary to Theorem 5,
p. 68, g and A’ are complements in L. Notice that gp, = (gVv h')A h =h
= fo, while hp, = (b v ¢g') A g = g = ep,. Letting «* denote the relative
orthocomplement of # in [gA h,g v h] we infer by Lemma 3.6 that
9on = (g v B¥) A b, ke, = (h v g¥) A g. Applying [4], Corollary to The-
orem 5, p. 68, to the interval [h A g, h v g] we see that ge,, he, are per-
spective in that interval; i.e., ep; and fp, are perspective in the inter-
val [g A h, g v h] as desired.

LEMMA 3.9. If x A e =2 A & =0, then xp, ~°x@, .

Proof. Repeated application of the Foulis-Holland theorem will
produce the fact that

BV TP, =TV TPy = TP,V TPy = (Vv €) A (T V €).
We are now able to state the following result, due essentially to
S. 8. Holland, Jr. Its importance stems from [7], Corollary 2, p. 340.
THEOREM 3.10. Let ¢, fe L. Then eSOf if and only if e A f =0 and

e 18 central in [0,e v f].

Proof. Let ¢S8(f. By Lemma 3.8 we must have ep; =0, s0 ¢ | f.
Dropping down to [0,e v f] we may as well assume f = ¢’. Then for
arbitrary z, x> (x A ¢) v (# A €¢') and if y is a complement of (z A e) v
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v(z A €)in[0,x], clearly y A ¢ =y A ¢’ = 0. By Lemma 3.9, yp, ~*yo,,
$0 yp, = Yo, = 0. But this implies y < e A ¢ = 0,80 = (x A e) v (zA€').
This shows that xCe for all z, so ¢ is indeed central in [0, e v f]. The
converse is clear. _

Making use of the above theorem and the fact that eS®f is equi-
valent to ¢ Vf in the interval from 0 to e v f, it is possible to make quite
an extensive list of conditions all equivalent to 8. Since the conditions
are due as much to Foulis and Holland as to the author, and since they
have become part of the “folklore” of orthomodular lattice theory, it seems
inappropriate to reproduce them here. Rather, we refer the interested
reader to Foulis [6]. One can, however, also characterize the condition
8© in terms of Sasaki projections as follows:

THEOREM 3.11. Let ¢, fe L with ¢ A f = 0. Then eS8V f holds iff zp, v g,
= T,y for all xelL.

Proof. Assume first that xp, v ap; = g, ; for all veL. Let s < e v f
and choose g to be a complement of (x A e) v (z A f) in [0,2]. Then
grne=gnanf=0,50g'g, =¢ and g'g, =f. Hence ¢'g,y; = 9'¢. v 9’9y
=evf, s0 g v(EeEnanf)=1and g=gna(evf) =0. It follows that
x=(xAne)v (xAf)forall x<ev fand, consequently, that e is central
in [0, ¢ v f]. By Theorem 3.10, ¢S .

‘Suppose conversely that eS®f. Then by Theorem 3.10, ¢ is central
in [0, e v f]. Routine computation shows that xp, = 2@, ;9. = (T@., ;) A €
=[x v (¢ Af')] A e. Similarly, xp; =[x v (¢’ A f)] A f. Now 2’ A (e v f)
< ev f implies that eC[2’ A (e v f)], so eC[x v (¢’ A f')]. By the Foulis-
Holland theorem,

wp, v op; ={[x v (¢ Af)IAetv{[zv (e Af)]Af}
=[zv (e Af)]A(ev]) =ap.y;.
We now investigate more closely the relation between S©® and 8%,

and what, precisely, it means for them to coincide.

LEMMA 3.12. e Vf implies ep, S fp, for all geL.
Proof. Given # > ¢’, by Theorem 2.3,

g=@vea@vf)=@vgven(xvygvi.

Applying Theorem 2.3 to the interval [¢’, 1], we see that ¢’ v eVg' v f
in that interval. We now make use of the fact that a - a A ¢ is an isomor-
phism of [¢’, 1] onto [0, g] to conclude that ep, Vfy, in [0, g], whence
ep, 8" fp, in L.

LeEMMA 3.13. e Vf is equivalent to eS¥fp, for all geL.



32 4 M. F. JANOWITZ

Proof. Let eVf. Fix geL and set h=(f' A ¢g') v g = (fo,)'. By
Theorem 3.4, ¢ < h, s0 ¢ = ep,. Notice, however, that '

fon=(viW)Ab=(FVvio)ah=(Fvgnar(fvyg)ah
=[(fvNAfvaIAT AgdIVvIFV AV g)agl
=0v [(fv g)Ag] =T

By Lemma 3.12, ¢8®fgp,. The converse follows immediately from
Theorem 3.4.

LEMMA 3.14. Let R be a symmetric relation on L such that: (i) eRf,
6, < e = e Rf; (i) eRf = e A f =0; (iii) eRf = eRfp, for all geL. Then
eRf = e8(f.

Proof. Let eecL be fixed, and say that f has property P in case eRf-
Note that if eRf and f ~ ¢ with common complement z, then fp, =
and #'¢p, = g shows eRg. It follows that P is a perspective property,
so as in the proof of Theorem 2.6, the ideal generated by the P-elements
is the kernel of a congruence relation @ such that e = 0(0*). It follows
as in 2.6 that eRf = eS®™f.

Combining the above two lemmas we now have

TueoreEM 3.15. If eSOf = ¢SV, then the separation conditions S,
SM, 8@ 8 qll coineide.

It seems worth mentioning at this point that if L is modular, then
perspectivity and strong perspectivity coincide. It is immediate that
S8® = 8O 50 by Theorem 3.15, the separation conditions are all equivalent.

4. The relative center property. In this section L will once again denote
an orthomodular lattice.

We agree to say that L has the relative center property (RCP) if e cen-
tral in [0, a] implies ¢ = 2 A @ with 2 central in L. As was pointed out
in section 1, the reason for considering this property is that it is valid
in any complete complemented modular lattice, as well as in the projection
lattice of a von Neumann algebra. If one is ever to abstractly characterize
these lattices, some knowledge of the relative center property would
appear useful. Recalling that a lattice with 0 and 1 is drreducible if its
center consists of 0 and 1, we first have

THEOREM 4.1. The following condilions are equivalent:

(i) L s irreducible and has the relative center property;

(ii) every interval [0, a] is irreducible;

(iii) every interval [e, f] is irreducible.

We omit the easy proof but refer the interested reader to Catlin

[2] for a discussion of irreducibility conditions on an orthomodular lattice.
For the general case we have. '
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LEMMA 4.2. Let L have the relative center property. The following are
equivalent:

(i) e8f;

(ii) e8Vf;

(iii) there exists a central element z with e <z and f<2'.

Proof. (i) = (iii). If ¢S, then e is central in [0, e v f], so by RCP
there exists a central element 2z such that e=(evf)Az=ev (fA 2).
Then fA 2<e implies fA 2z =0, s0o e<z and f<?.

(iii) = (ii) = (i). Clear.

COROLLARY 4.3. If L has the relative center property, then the separa-
tion conditions 8@, 8M, & 8 gll coincide.

Now let L be complete, and for each eeL, y(e) = A {zeL : z central,
z > e}. The element y(e), usually called the central cover of e, is evidently

the smallest central element dominating e. The next theorem tells what
it means for L to have the relative center property.

THEOREM 4.4. For a complete orthomodular lattice L, the following
are all equivalent:

(i) L has the relative center property;

(ii) eSOf = eSWf;

(iii) e8Vf = y(e) A y(f) = 0.

Proof. (i) = (ii) by Lemma 4.2.

(ii) = (iii). By Theorem 3.15 the separation conditions 8, 8%, ..., 8¢
all coincide. Given ee L, let ¢V = \/{feL : ¢ Vf}. By Theorem 2.3, ¢ Ve?, and
as in the proof of Theorem 2.6, there exists a congruence relation & on L
whose kernel is [0, e¢V]. It is immediate that ¢V is central. We now note
that eSOf =>eVf =>f<e¥ and e A ¢V =0 = ¢ < (¢")'. Since ¢V and (¢')’
are central, we see that y(e) < (¢¥)’ and y(f) <eY, so y(e) A ¥(f) = 0.

(iii) = (i). Let e be central in [0, a]. Then eS®a A ¢’ = y(e) A y(a A
Ane)=0.Hencean y(e) =(ev (ane))Ayle) =ev(aneavye)=e.

Although the assumption of completeness in Theorem 4.4 can be
considerably weakened, we present herewith an example to show that
it cannot be entirely removed. Let § denote an infinite-dimensional
Hilbert space and L the set of ordered pairs (Jt, N) of closed subspaces
such that both M and N are either finite-dimensional or cofinite-dimen-
sional. If L is partially ordered in the obvious manner by (IR,, N;) <(M,,N.)
iff M|, = M, and N, = N,, it is easy to show that L becomes an irreducible
orthocomplemented modular lattice. Yet if M is finite-dimensional, (I, 0)
is central in [(0, 0) (M, M)]. This shows that an irreducible orthocomple-
mented modular lattice may have reducible intervals. In view of Theorem
4.1, we conclude that the relative center property may not be deduced
from the fact that eSOf = ¢SV,

Colloquium Mathematicum XXII.1 3



34

M. F. JANOWITZ

(1]
(2]
(3]
[4]
(5]
(6]
(7]
(8l
[9]
[10]
[11]
[12]

REFERENCES

G. Birkhoff, Lattice theory, American Mathematical Society Colloquium
Publications 25, 1967 (third ed.).

D. Catlin, Irreducibility conditions on orthomodular lattices, Journal of Natural
Sciences and Mathematics 8 (1968), p. 81-87.

D. J. Foulis, Baer s-semigroups, Proceedings of the American Mathematical
Society 11 (1960), p. 648-654. '

— A note on ofthomodular lattices, Portugaliae Mathematica 21 (1962), p. 65-72.
— Lecture motes on lattice theory, University of Florida, 1964.

S. 8. Holland, Jr., A Radon-Nikodym theorem in dimension theory, Transac-
tions of the American Mathematical Society 108 (1963), p. 66-87.

— Distributivity and perspectivity in orthomodular lattices, ibidem 112 (1964),
p. 330-343.

M. F. Janowitz, Quantifiers and quasi-orthomodular lattices, Wayne State
University doctoral dissertation (1963).

— A note on normal ideals, Journal of Science of Hiroshima University, Series
A-I, 30 (1966), p. 1-9.

— Perspective properties of relatively complemented lattices, Journal of Natural
Sciences and Mathematics 8 (1968), p. 193-210.

— Section semicomplemented lattices, Mathematische Zeitschrift 108 (1968),
p. 63-76.

J.von Neumann and I. Halperin, On the transitivity of perspective mappings,
Annals of Mathematics 41 (1940), p. 87-93.

UNIVERSITY OF MASSACHUSETTS
AMHERST, MASSACHUSETTS

Regu par la Rédaction le 21. 1. 1969



