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1. Imtroduction. This paper is a sequel of [1]. We shall prove here
a purely semantical version of the Compactness Theorem: every set of
sentences has a model iff every finite subset has a model. To prove it
we generalize the notion of an ultraproduct and the well-known Lo$
Theorem to weak models for L, . From this the Compactness Theorem
easily follows. It must be said that this theorem also follows from the
results of Keisler ([2], Theorem 3.15.1). Concerning the Lowenheim-
-Skolem Theorem, it follows from a counterexample that the Downward
Lowenheim-Skolem Theorem holds only in the case corresponding to the
definition of =, and that the Upward Lowenheim-Skolem Theorem holds
in the cases corresponding to the definitions of <,, =, and <,. Finally,
we make an attempt to describe the sets of sentences preserved under
the operation of forming extensions. Unfortunately, we did not succeed
in giving a full description of these sets.

2. Compactness Theorem and Léwenheim-Skolem Theorems. It follows
from Keisler [2] that there exists an axiomatization for Ly such that every
sentence which is true in all structures for L, is deducible in L, and con-
versely. Namely, let 4 be a set of axioms for L including the axioms for
equality. Let 4, be

AU{Vz(p = y) > Q9 Q@ y), (@) (@) < (QY) P(y)
if y is a variable which is not free in ¢()}.

As deduction rules we take the modus ponens and the generalization
rule.

THEOREM 2.1 (Keisler [2], Theorem 3.15.1). Let L, be countable and
let 2 be a set of sentences in Ly. The following are equivalent:

(1) X' 48 consistent relative to Ag.

(i1) 2" has a model.
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CoROLLARY (Compactness Theorem). Let L, be countable and let X
be a set of sentences in Ly. X has a model iff every finite subset of 2 has
a model.

Remark. Both these theorems still hold if we omit the assumption
that L, is countable.

We are going to prove the Compactness Theorem without using an
axiomatization. The method is to make an ultraproduct construction and
to prove the Y.o§ Theorem for it.

Let (Uy, pi)icr be a collection of structures for Ly and let F be an
ultrafilter over I. The uliraproduct, written as | n (A, pi)]lF is defined
as follows:

[[] 20|l F = (%,p), where u =[[] %17,

iel tel
and p < 8([JA4,F) is such that zep if there are ; < A, with

{i:0ep;}e F and o= {Ee nA,-lF: {tel: a(t)ex;}e F}

This definition of p seems to be somewhat involved. A nicer one

would be the following: zep if there are x;e p; such that z = [] «,|F,
tef

but we have to take into account the possibility p; =9 or Qe p;.
We state the following easy proposition without proof:
PROPOSITION 1. (a) {tel: Qe p;}e F iff Dep.
(b) {teIl: p;, =9} F iff p =09.
This proposition we need in the following theorem, which is & gen-
eralization of the Y.o§ Theorem.

THEOREM 2.2. For all formulas ¢ in Ly and for all @,, ..., @,¢ [[A,|F,
tel

(%, Pk play,...,a,] off - {iel: (%,Ps)’:ﬂal(i),--- a,(i)]}e F.

Proof. We prove this by induction on the construction of tp Only
the case ¢ = (@ v,,)y is not trivial. Suppose

{ie It (W, o) F (Q V) w[a1(d), ..., 4 ())]}e Fy

= {aed;: (QIn.'p:) Fyla(d)y ..., @y ...y a,(4)]}.

Then we have {ie I: B;e p;}e F. Let X = {ie I: B, = @}. We consider
two cases (for Xe F and X¢ F).

() Xe F. Then we have
{ieI: (W, p)F 1T vy)wia:(3), ..., 8,(6)]}e F  and  {ieI: DepleF,
and so, by Proposition 1, @ep. We have, by the induction hypothesis,

‘(QI,p)i: _la vmw[a’la LA ] an]'

and let
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Since Fep and (A, p)F 713 v, v[a,, ..., a,], we have
(A, p) F (Q v5) w[@y,y ..., 3],

which we had to prove.

(b) X¢F. Then I—XeF, ie. {icl: B; #0}e F. For B; # 0, let
x; = By;; otherwise let x; = A;. Then, if we put

Y = {?:GI: w.‘ = B‘ avnd wiep‘},
we have Ye F.
Cramv. If @ = {a: {i: a(i)ex}ec F}, then zep and

o ={ac[[4:1F: (A, p)k y[ay, ..., &, ..., ,]}.

iel

Proof. It follows immediately from the definition of p that ze p.
So we have to prove that

(A, Pk pldyy ..y @y ..y G] i {32 a(i)ea}e B for all Ge[ [A,F.
Let @ be such that el

(A, ) E yldyy ..., a,...,4,],
and let

Z = {iel: (U, p)) E play(2),...,a(d),...,a,(9)]}.
Then our hypothesis on y gives Ze F. So, if i¢ Z, then
(U, p) F pla.(i), ..., a(d), ..., a,(9)],
whence a(i)e B;. Consequently, we have a(i)ex;. So
Zc {iel: a(i)exgy and ZeF.
This implies that {teI: a(i)ex;}e P.

Let de [ A;| F be given such that {ie I: a(i)ex;}e F,andlet 8§ = {ie I:
i

a(t)ex;}. If teY, then o; = B; and x;e p;. If i 8, then a(i)ex;. So, if
1e YNS, then

a(t)exsep; and (U p) Fplay(d), ..., a(d), ..., a,(9)].
From this it follows that
8nY < {i: (U, ;) F plar(9), ..., a(d), ..., ay(d)]}.
Since SNY e F, we have

{i: (U, 2) Fyplas(4),...,a(),...,8,(0)]}e F.
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The induction hypothesis on y gives (%, ») k v[dy, ..., 4, ..., a,]. So
our claim is proved, and now we may conclude with

(A, ) F(Q V) w[dyy ...y dy],
the proof of which was required.

Now suppose (U, p) k(@ v,) v[@,, ..., @,]. This means that there are
x;< A; such that if ¥ = {ieI: ;e p;}, then Ye F and

(A, p) Epl@yy.c.y@y...yd,] iff {tel: a(d)ex;}elF.
Applying the induction hypothesis on yp, we have
(%) {gel: (s, py) Fyla(i), ..., a(d),..., a,()]}e F
iff {ieI: a(t)ex;}e F.
We have to prove that
{te I: (s, i) F(Q vy) p[@1(2)y ..., 6,(3)T}e F.
Let B; = {aed;: (W, p;) kFylay(2)y...oay...,0,()]} and X = {ieI:
B; = @}. We consider two cases (for Xe¢ F and X¢ F). :
(a) Xe F. In this case we have
{icI: (Ui po) F 1T vy play(4), ...y ay(d)}e F.
Then it follows from () that, for no ae[JA4;, {ieI: a(i)ex}e F.
iel

This implies that {ic I: z; = @}e F, and so, in view of Y F, we have
{iel: Oep;le F. If

{iel: (U, po) F 13 0n 9[6:(9)5 ..., 8,(3)}e F and {ieI: Bep}eF,

then
{iel: @ep; and (W;, p;) F 1 v,9[a:(0),y ..., 4, (3) ]} F.

Hence we may conclude the formula
{te I: (W, p;) F(Q V) w[a1(2)y ..., @,(¢)]} e F,
the proof of which was required.
(b) X¢ F. We have to prove that {ie I: B;e p;}e¢ F. We shall prove

(%%) {tel: By =ux;}e F.

If (#x) is proved, then we have Yn{icI: B; = x;}e F, which will
complete the proof.
Proof of (xx). Let

Xl = {iGI—X: $,"‘—B‘- #g},
Xg = {iEI——X: wi;: Bi} and .Xs = {'&'E I-X: &y =B‘}.
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We shall prove that Xse F'. This is enough, because then we have
X; < {iel: B, =z}, and so {iel: B; = x;}e F. Take an ae[[A; such
that ied

(1) if 1eX, then a(¢) is arbitrary;

(ii) a(?)ex;— B; for all ieX,;

(iii) a(?)e B;—x; for all 1 X,;

(iv) a(t)ex; = B; for all ieX,.

We have

(W, 2o) F pla1(2), ...y @(3), ..y a,(d)] iff a(i)e B; iff deX,UX,
and
a(t)ex; iff <eZUX,UX;, where Z = {ieX: a(i)ex}.
From (%) it follows that X,UX e F iff ZUX,UX e F. If X,UX,¢ F,
then also ZUX,UX;¢ F. Then, since F is an ultrafilter, we have
(I—X)uZ = X,uX,UZUX,UX.¢ F.
But X¢ F, and so I — Xe F, whence (I —X)UZe F.
Thus the only possibility is X,uUX e F. Then also ZUX,UX e F, and
from this it follows that
X; = (XX )N(ZUuX,uX,)e F.
This proves (**), and so the proof of the theorem is complete.

CoMPACTNESS THEOREM. Let 2 be a set of sentences in Ly such that
every finite subset of X has a model. Then X has a model.

Proof goes in a standard way with the ultraproduct construection.

Let (A, p) be a structure for L,, and dy the diagonal embedding
of A into AL, where I is a set and F an ultrafilter over I. From the ¥.0§
Theorem it follows that dz(A, p) < (A, p)L. In our case we have

dp(U, p) <, (U, P)p-
To see it, let zep and y = {a: {i: a(i)ex}e F}. Then yndzxA ==
and yeq, where (QI’.'I’){? = (suﬂ‘, q).
If ie {2, 3, 4}, then, in general, we do not have dp(%, p) <; (%, p)%.
Examples. (a) ¢ =2. Let A =(Z,<) and p = {{ne Z: n < m}:
me Z]. Let I = » and let F' be an ultrafilter over I that contains the

sets {new: n >k} for all kew. If fe Z' is such that f(i) =4 for all ie I,
then

(A, p)fi' FQ vy (v < ) [f])
which is easy to see by Theorem 2.2. If
r = {ge Zfr‘: (QI,p)f?‘ F (v < vl)[g’f—]}’
then zeq, where (U, p)k = (AL, q).
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Now consider the set {ex: g is a constant function}. This set is equal
to {ge Z%: g is a constant function}, and so it is not equal to dp*y for
any yep. This shows that dx(%, p) <. (A, p)& is not the case.

(b) t =3 0r¢ =4. Let A = {w) and p = {w}. Let I = w and let F
be a non-principal ultrafilter over I. If we write (%, p)k = (AL, q), then ¢
has obviously only one element. This element has cardinality |wm| = 2°.
This shows that dz*w¢g, and so dz(%, p) <, (A, p)k is not the case for
te {3, 4}.

Remark. In the case of non-measurable ultrapowers it is possible
to extend our definition of ultrapower to get the following result: the
diagonal structure is an elementary 4-submodel of the ultrapower. To
show it we proceed as follows. Let (B, ¢) be a non-measurable ultrapower
of (A, p) defined as before. Let ¢* = q,Up, where ¢, is minimal with
respect to the g-interpretation of @ in B. Now we have (¥, p) <, (B, ¢*).
This follows from the fact that in the case of a non-measurable ultrapower,
a subset of the diagonals is definable in the ultrapower iff it is finite.
Thus (B, ¢q) is good with respect to (U, p) (for the definition of goodness
see p. 167).

Now we shall prove the Downward Lowenheim-Skolem Theorem
for <, and the Upward Lowenheim-Skolem Theorem for <,, <; and <.
A counterexample will show that in the other cases the Lowenheim-
-Skolem Theorem does not hold.

THEOREM 2.3. Let (U, p) be a structure for Ly such that |Lg| < |A].
Suppose C is a subset of A and x is a cardinal such that | Lyl 4 |C] < » < |4].
Then there is a structure (B, q) such that C < B, |[B| = x and (B, ¢) <, (A, p).

Proof. The structure (B,¢q) in Lemma 5.1 in Keisler [2] works,
since ¢ is minimal. (For the definition of minimality see [1].)

THEOREM 2.4 (Upward Loéwenheim-Skolem Theorem for <). Lei
(A, p) be given such that A is infinite. Let » be a cardinal such that
%> |Lol+1A4|. Then there is a structure (B, q) with (U, p) < (B, q) and
|B] = =.

Proof runs in a standard way using the Compactness Theorem
and Theorem 2.3.

CoROLLARY 1 (Upward Lowenheim-Skolem Theorem for <,). Let
(A, p) be given such that p is minimal and |A| > w, and let x be a cardinal
such that |Lg| 4 |A| < . Then there is a structure (B, q) such that |B| = x
and (U, p) <, (B, 9).

Proof follows immediately from Theorem 2.4 and the remark
about <; and < in the beginning of Section 6 in [1].

COROLLARY 2. If 2 is a theory in Ly with a model of cardinality net
less than |Lg|, then X has models of each cardinality not less than |Lg|.
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Definition. Let (A, p) < (B, q). Then (B, q) is said to be good
with respect to (A, p) if the following condition is satisfied:

For all ¢e Ly and b,,...,b,¢ B, if {ced: (B, q) Fp[by, ..., ¢, ..., b,]}

is infinite, then
{GGB: (%’ q) l= ¢[b1’ ceey 6, ceey b"]} $ A.-

LeEMwMA 1. Let (A, p) be given such that |A| > w, and let x be a cardinal
such that x > |Ly| 4 |A|. Then there is a structure (B, q) such that |B| = x,
(A, p) < (B, q) and (B, q) is good with respect to (A, p).

Proof. We construct a sequence (B, , ¢,)nc sSuch that (3B,,q,) <
(Bri1s Gns1)y and (A, p) = (Bo, ¢o) is the structure defined in Theorem 6.4
of [1]. Let Lg,, = Ly{c,: acA}. Then |Lg,l < x. Put (B,, ¢o) = (A, P)
and let (B,, ¢q,) be constructed. Let

Z, ={<@, 6y, ..., 8,>: pe Lg, @y, ..., a,¢ B, and
{bed: (B,, ¢,) F ¢[a1,...,b, ..., a,]} is infinite}.
Let Lg ,,, be the language which we obtain from L,, by adding

& new individual constant d,; for Ze Z,. Assuming |L,,| < %, we have

= {@(Capy -1 @7y 01 Cay)t T€Zpy T = @y @y, .ccy Gy}
U{dn,E # Cqt aed, ZZ:‘eZn} UTh($rn Qns b)beBn'

Since every finite subset of X, has a model, so X, has a model

(Bpi1s Gny1) of ca,rdlna,hty %
If we identify ¢2n+1 with ¢®n for each aed and d "“ with d; B > for

each ¢ <n—1 and zeZ;, then we have

(%7” Qn) < (%n+l7 qn+l)'

(B,s @p)neo 18 @ simple elementary chain. Let (B, q) be the structure
as defined in Theorem 6.4 of [1]. Then |B| = x» and (U, p) < (B, q).
CrAIM. (B, q) i8 good with respect to (U, p).

Proof. Let {ced: (B, q) F¢[a,,...,¢, ..., a,]} be infinite. There is
an new such that <{¢,a,,...,a,> =xe¢Z,. Then we have

(Brs1s Gny1) F [ty ..., d Pt cery Op ]y

nax
and so

(B,9) F play, ..., &2, ..., a,].

. B
Since dn%+l¢A’ we have

{ce B: (B,q)Fela;,...,c,...,a, ]} &£ 4.
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This proves the claim, and so the lemma is proved.
PrOPOSITION 2. Let (U, p) <(B,q) and let x = A be finite. Then
ZTepP 'l,ff Teq.
Proof. Let # = {a,,...,a,} =< A. Then
(W, ) F(Qr)(®x =0, V...vZ =,) [@y1, ..., a,]
iff (B, q) F(Qz)(x =v,v...vz =1,) [a,,...,a,],

which completes the proof.

THEOREM 2.5 (Upward Lowenheim-Skolem Theorem for <, and <,).
Let (U, p) be given such that |A| > w. Let » be a cardinal such that x > |Lg| +
+ |A|. Then there is a structure (B, q) with |B| = x and (U, p) <. (B, 9),
and so (A, p) <, (B, ¢) and (A, p) <3 (B, 9).

Proof. There is a (B, ¢’) such that |B| = %, (%A, ») < (B, ¢) and
(B, q') is good with respect to (U, p). Let ¢'’ be minimal with respect to
the ¢’-interpretation of @ in B. Then (B, ¢'’) is good with respect to (U, p).
Let ¢ = q''up.

CrAmM 1. For all pe Ly and b,, ..., b, B,

(B, q")F@[byy ..., b,] ff (B, @) Felby, ..., b,].

Proof runs by induction on the construction of ¢. Only the case
@ = (Qv,)y is not trivial.

Suppose (B, ¢'’) F (@ v,,) v[byy ..., b,]. Then
{ce B: (B,q")Fylbyy...,¢,y....b,1}eq"”.
The induction hypothesis on y gives
{ce B: (B,q)Fvy[by,...,c,...,b,1}eq",
and so
{ce B: (B, q)Fy[byy...;¢,...,b,]}eq,
whence
(%’ Q) F (Q ’vm) 'P[bn AR bn]'
Suppose (B, q) F (@ v,,,) v[by, ..., b,]. Then
{ce B: (B, q) F y[b,, reey @y nnny b,1}eq Up.
Let {ced: (B,q")Fy[by,...,¢y...,b,]} be finite. Then, by Propo-
sition 2,
(B,9")FQ vy yp[byy ...y b,].
If {ced: (B,q") Fyp[by,...,¢y...,b,]} is infinite, then
{ceB: (B,q")Fylb,...;¢y...,b,1} &£ 4,

and so
{ceB: (B,q")Fyplbyy...;0,..., b1} eq”.
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Hence
(B, q") F(Q ) w[byy...5D,],

which proves our claim.

CLAamM 2. ¢NnS(4) = p.

Proof. Obviously, p < ¢NnS(4). ,

Let req and ¢ < A. Suppose x¢ p. Then we have req'’. Since ¢q'’
is minimal, we have '

{ce B: (B,q")Felby,...,c,...,0,]} =«
for some ¢e Ly and by, ..., b, B.

So we have {ceA: (B, ¢")Fp[by, ... ¢y...,b,]} = x. Since (B, q"') is
good with respect to (2, p), = is finite. Then, by Proposition 2, ze p.
A contradiction.

From Claims 1 and 2 it follows that (B, ¢) is a structure of cardinality »x
which is an elementary 4-extension of (U, p). This proves Theorem 2.5.

Note that, as follows from this theorem, we may omit the condition
that p is minimal in Corollary 1 to Theorem 2.4.

The Upward Loéwenheim-Skolem Theorem does mot hold for <, and
the Downward Lowenheim-Skolem Theorem does not hold for <,, <, and <,.

This is shown by the following counterexample.
Let Ly have no individual constants and let R, F and G be three
binary predicate letters. Let 2, consist of the sentences
V’vo(R(’Uo: ’”o)); Vo, Vo, (R('”o’ v;) < R(v,, ’Uo))’
Vo, Vo, V'”z(R('”or 1) A R(vy, v,) - R(v,, "’2))'
Let X, consist of the sentences
, (Qvo) (Vo # 7o), V”1Q'UO(R('007 "’1))7
Vv,...Vo, (Qvoq) — 3v,,, Vo, (p & R(v,, 'vn+1))) for all ¢(v,, ..., v,)eLy.
Let X, consist of the sentences
Vo, V’”1V'02(F('v07 V) AF (vg, 03) >0, = ,),
Vv, 3v, Fo, (F("’u V3) A B(v,, '”2))a Vv, 3o, (F('”o’ "71))1
Y0, V0, V0, (F (04, 03) AF (05, 0;) =04 = 0,), ‘
Vv, Vv, Vv, Vo5 (F(vg, 9,) AF (0, 05) AR(Vy, ¥5) =0 = 0y).
Let X, consist of the sentences
Vv, Vo, dv, (G(’”m V) AR(v,, ’02))’
Vv, Vo, Vo, (G('Uo: 01) AG(vy, v,) — "1 R(v,, ’02)), Vo, 3o, (G('”o; '”1))7
Vv, Vv, Vo, V05 (G (04, 91) AG (D3, V5) A R(0y, 05) AV, 05 — Vg 7 D).
Finally, let 2 = 2,02, 0, Ul,.
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Then (U, p) = {4, R4, F4, G4, p)> with p minimal is a model of X

iff the following conditions are satisfied:
(i) R4 is an equivalence relation;

(ii) p is exactly the set of equivalence classes;

(iii) B4 states a one-to-one mapping of A into itself such that
|[Enrng F'| = 1 for Bll equivalence classes E;

(iv) G4 is the union of all G4’s, where G4 is a bijection of 4 onto E
for all equivalence classes FE.

2 has a model {w— {0}, R4, F4, @4, p>, where R4(n, m) iff 27| n iff
2/|m for all jew. Let {E,: new—{0}} be the set of equivalence classes.
Then p is equal to this set.

E4 (n, m) iff m is the minimum element of E,. Let f, : E, — o — {0}
be a bijection for all new — {0}. Then G4 (n, m) iff f;(m) = n, where me E;.
By the Compactness Theorem 2’ has models of each infinite cardinality.

CramM 1. Let (U, p) and (B, q) be models of X such that |A| < |B].
Then it is not true that (A, p) <, (B, q).

Proof. ¢ contains all equivalence classes of R®. The cardinality of
the set of equivalence classes is equal to |B|, and so there is a yeq such
that ynA = @. Since De p, it is not true that (A, p) <, (B, 9).

CLAIM 2. Let (U, p) and (B, q) be models of X such that |A| < |B| and q
is minimal. Then neither (A, p) <3 (B, q) nor (A, p) <, (B, q) holds.

Proof. ¢ is minimal, and so it contains only the equivalence classes
of RB, which are all of cardinality |B|. Because |[4]| < |B|, we have p & q.

3. Sentences preserved under the operation of forming extensions.
In this section we make an attempt to describe the set of sentences pre-
served under the operation of forming extensions. We distinguish four cases
corresponding to the four definitions of a submodel and of an extension.
Unfortunately, we did not succeed in giving a full description of these
sets. However, in each case we shall give some characteristic examples.
This has the following reason: when two or more definitions of a sub-
model and of an extension are given, one wants to see the differences
between them by studying their properties. Especially, the differences
between the sets of sentences preserved under the operation of forming
extensions (or submodels) are a good indication of the differences between
the given definitions. Moreover, in investigations of special relations
between structures a description of the set of sentences preserved under
the corresponding operation is & helpful tool (see, e.g., Weglorz [4]).

Definition. Let & be the operation of forming extensions of struc-
tures for L, i.e. Be &(A) if A < B.

Let i€ {1, 2, 3, 4}. &; is the operation of forming i-extensions of struc-
tures for Ly, i.e. (B, q)e &(Y, p) if (A, p) <; (B, 9.
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Let 0 be an operation defined on structures for L or Lg,. Then 4(0)
is the set of structures im L or Ly preserved under 0, i.e. peA(0) if BE¢
for all & and % such that #¢ O0( o) and o F ¢ (here o and # are structures
for L or Ly).

We state the following obvious propositions without proof:

PROPOSITION 3. Let O be an operation defined on structures for L or L,
and let H < A(0). Then also H = A(0), where H is the smallest set X such
that H = X, and

(i) pAy, pvyeX for all ¢, peX;

(ii) peX whenever ¢ or ~\¢ i8 a tauiology;

(iii) peX whenever pe X and ¢ =y is a tautology.

PROPOSITION 4. A(&) = A(&) for each i€ {1,2, 3,4}, A(&,) < A(&)
for each ie {2, 3,4}, and A(&3) = A(&,).

LEMvMA (Ro§ [3]). 4(€) ={yp |y 18 & sentence in L such that vy
= da,... Iz, p, where ¢ has mo quantifier}.

Let (A, p) be given. We shall investigate which properties of p can
be expressed by a sentence of L.

Definition. Let P be a property of structures for Ly. P is a first-
-order property if there is a sentence oe Lg such that, for all structures
(A, p), (A, p) k¢ iff (A, p) has the property P.

Let 0<n<m<ow and 0<k<l<w be such that if ¥ =1 = 0,
then 0 <n < m< 1.

(A, p) has the property P, ) . if there are at least » and at most m
elements x in p such that k< || < 1.

(A, p) has the property Ugy, ., if n < |4]| <

We can generalize this by writing, instead of n, m, k or 1, the symbol oo
which is interpreted as ‘infinite”’, e.g.,

(A, p) has the property P, ) (0,c) if 2 has at least n infinite elements.

PROPOSITION 5. U, nmy 8 a first-order property iff 0<n<m < w or
0<n<w and m = oo.

PROPOSITION 6. P, 1) ., ©8 @ firsi-order property iff one of the follow-
ing conditions 18 satisfied: .

(i) 0<k<l<owand 0<n<m< w;

(i) 0K<k<I<wand 0<n< w and m = oo;

(iii) » = 0 and m = oo.

Proof. If n = 0 and m = oo, then there is nothing to prove, since
every structure for L, has the property P ., .z

fo<n<m<owand 0<k<!<w, then Py ¢y i8 2 positive

Boolean combmatlon of Py g8 Where n<<i<m and k<j<l It is
easy to see that Py, ;5 for all 4,j < o is a first-order property.
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Let 0<n<w, m= o0 and 0<k<Il<ow. Let ¢ ;(yy,...,¥;) or,
shortly, ¢;,(y;) be a formula expressing &k < [{y,,...,¥}| <, and let
01 (Y1y eo+y Yy 215 -++y &) o, shortly, o;(y;,2;) be a formula expressing
{¥1y .-y v} # {#1,...,%}. Then P, o) 1, Where n >1, is expressed by
the following sentence:

yy... Jyy... Iyp.--. El?lnz(Qk,z(?/u) Ao e At (Yni) AOi(Yris Y2i) A <o A
A0y (Y1ss Yni) A v e AOY (Y169 Yni) A
AQ2)Z =YnV...VZ =Y A A(QR)Z = YV ... VZ = Yp)).

Conversely, let P, )« be given. We consider three cases.

() » = m = oo. Then P, . & 18 not a first-order property, as
is easy to see with the use of the ultraproduct construction.

(b) ) l<n<m<wand Il = oo.

(ii)1<n<owand m =1 = oo.

In each of these cases the following counterexample shows that
P m)k,n 18 Dot a first-order property. Indeed, for iew, let p; be the
t-th prime number and p;Z = {ne Z: p;|n}. In the same way as at the
end of Section 6 we prove that, for all ¢ Ly and ay, ..., a,¢ Z,

Z,{p;Z: 2<i<n+1})Folay,...,a,]

iff <Z,{p;Z:2<i<n})kola,...,a,].

{Z,{p;Z: 2 <i<n+1}) has the property Py m) .y, but <Z, {p;Z:
2 <1< n})> does not.

() » =0, m < w and I = oo. Also in this case we have a counter-
example which shows that P, ,, «.; is not a first-order property. Namely,
as in case (b), <Z,{p;Z: 2<i<m+1}) has the property P m)wxns
while <Z, {p;Z: 2 <i<m+2}) does not. But also, for all pe Ly and
biy ..., b, Z, we have

Z,{p:Z: 2<i<m+1})F[by, ..., b,]
iff <Z,{p;Z: 2<t<m+2})Feplb,...,b,].

This completes the proof of the lemma.

Let 7y, m),«,7 e & sentence of L, expressing Py, m «,p if 1t is a first-
-order property. Let vy ., be a sentence of L expressing Uy, if it is
a first-order property. It is easy to see that we have the following

PROPOSITION 7. (i) 4(€)Y{¥s11,00)V Tm,c0),om), JOr all ny m < 0} < A(&,).

(ii) A(€)U{y |y = Jx,... T2, T1Qyp, where ¢ is open} = A(&,).

(iii) A4(&81) A7 n,000,m00 1 %0,m)tk1)s Fa,1),00,0) JOT Ty My by 1 < 0} = A(&y).

(iv) A(&3) V{1 7g,1,0,0 E 4(E).

From this it follows also that all inclusions in Proposition 4 are
strict. The above-given propositions show what, given a structure (%, p),
can be said about p. The author did not succeed in giving a full description,
which is necessary to prove some preservation theorems.
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