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ON STARSHAPEDNESS
OF THE UNION OF CLOSED SETS IN R"

BY

KRZYSZTOF KOLODZIEJCZYK (WROCLAW)

In this note we give a theorem on starshapedness of the union of a finite
family of closed sets in R". This theorem is equivalent to Helly’s theorem for
a finite family of convex sets.

1. Basic definitions and notation. Let S be a subset of R". For points x
and y in S, we say x sees y via S if and only if the corresponding segment
[x, y] is contained in S. The star of x with respect to S is the set st(x, S) of
all points of S which see x via S. We say that a set S is starshaped if it
contains a point g which sees every point of S. The set of all such points g is
called the kernel of S and is denoted by ker(S). Obviously, ker(S) can be
alternatively defined as the intersection () {st(x, S): xeS].

Throughout the note, conv(S), dim(S), card(S) will denote the convex
hull, dimension, cardinality, respectively, of the set S. Finally, let B(0, M)
= {x: ||x|| < M} and let (n) denote the set of natural numbers {1, 2, ..., n].

2. The result. A well-known theorem of Krasnosel'skii (see [7] and [10])
states that if S is a compact set in R", then S is starshaped if and only if any
n+1 points of S see a common point via S. This result was expanded by
Valentine [10]. The Valentine theorem can be formulated as follows:

THEOREM 1. If S is a closed set in R" and C is a compact subset of S such
that any n+1 points in S can see a common point in C via S, then S is
starshaped.

As a consequence of this theorem we obtain the following result:

THEOREM 2. Let & be a finite family of closed sets in R". If any n+1
members of & have a starshaped union, then ker(|) ) # @.

Proof. Let # be an m-membered (m > n+ 1) family of closed sets in R".
Consider all subfamilies 4,, ..., 4, of %,
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having n+1 members. By assumption we have
ker(U¥%)# 9 for ie(s).

Obviously, the sets |J %, ie (s), are closed. This implies that the sets
ker(J %) are also closed (see the Lemma in [6]).
Now we take a ball B(0, M) such that

B0, M)nker()%)# @ for ie(s),
and consider the following sets:
S=y .7,
C =U {B(0, M)nker(U %): ie (s)}.

It is easy to verify that these sets satisfy the assumptions of Theorem 1. Thus
ker(|J #) # @ and the proof is completed.

Following Peterson [8] we call a set S finitely starlike if every finite
subset of S can see a common point via S.

By Krasnosel'skii's theorem and Theorem 2 we obtain immediately the
following

CoROLLARY. Let # be a family of closed sets in R" such that any n+ 1

members of # have a starshaped union. Then
(i) if U -# is compact, then ker(|) #) # O;

(i) if # is finite, then ker(|) %) # O;

(i) if .# is infinite, then \) .# is a finitely starlike set.

The notion of dimension of the set ker(S) was investigated by many
authors (see, e.g., [2]-[4], [9]). The study of dim(ker(S)) has been stimulated
by Problem 1.1 in [10].

In the subsequent theorem we give conditions that will guarantee that
the kernel of the union of all members of .# is at least k-dimensional. That
theorem contains Theorem 2 as the case k = 0.

First we recall the well-known equality

(1) N {st(x, S): xeS} =) [conv(st(x, §)): xeS},
which is valid for any closed set S = R", and define
" k)_%n+1 if k =0,
TV = Ymax {n+1, 21—2k+2)  if 1<k<n.

Moreover, we quote here the following theorem of Katchalski [5] which
we will need:
THEOREM 3. Let .# be a finite collection of convex sets in R" such that
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each subfamily of g(n, k) members has intersection of dimension at least k.
Then dim (N %) > k.

Let us remark that the case k =0 in Theorem 3 is Helly’s theorem.

THEOREM 4. Let X~ be a finite collection of closed sets in R" such that the
union of each subfamily of y(n, k) members has at least k-dimensional kernel.
Then dim (ker () X)) = k.

Proof. The proof proceeds by induction on s = card .#". The theorem is
obviously true for s = g(n, k). Suppose the result holds for s = s, = g(n, k),
and consider the case s = s,+ 1. Our induction assumption implies
(2) dim(ker( #)) =k for ie (so+1),

where J; (here and further on) denotes the set J#\{S;}.
We always have

3  ker(Uoy)=N{st(x, YA xel X3}
= N{N{st(x, U XD: xe8;}: je so+1M\i}}
< N{N{st(x, U H): xeS;}: je (so+1D\{i}}
= N {N{conv(st(x, U H)): xeS;}: je {so+1N\{i}}.

By Q; we denote the following convex sets:

Q; = N{conv(st(x,  X)): xeS;}, jelso+1).

From (2) and (3) it follows that the intersection of any s, sets Q; is at
least k-dimensional. Katchalski’s theorem now implies that

) dim (N {Q;: je {so+1)}) = k.
Obviously, the set () ¢ satisfies (1), and therefore we have
ker (U #) = {conv(st(x, UXH)): xe YA}
= N {N {conv (st(x, U.X)): xeS,-}:.je (so+ 1)}
=N {Q;: je (so+1)}.
These equalities and (4) imply dim (ker({J¢)) > k. This completes the proof.

3. Equivalence of Helly’s theorem and Theorem 2. Krasnosel'skii’s theo-
rem is proved by applying Helly’s theorem to an infinite family of convex

sets (in this case the compactness of the sets must be additionally assumed).
Borwein [1] has shown that Helly’s theorem (for a finite family) can be
deduced from Krasnosel'ski’s theorem. In this sense both theorems are
equivalent. Our Theorem 2 is obtained from Helly’s theorem for a finite
collection (cf. the proof of Theorem 4). The following natural question arises:
Can Helly's theorem be deduced from Theorem 2? The answer is positive,
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and the proof of this fact goes just as in [1], but starshapedness of the set
S=U {Eij(Oa M) ny <j< nN+l}

is obtained from Theorem 2.
Let us note that using arguments similar to the ones above we can show
the equivalence of Katchalski’s theorem and our Theorem 4.

4. Examples. Finally, we give three examples- demonstrating that the
closedness and finiteness conditions in Theorem 2 cannot be dropped and
that the number n+1 in Theorem 2 is the best possible. Similar examples
showing the importance of all the assumptions in Theorem 4 may also be
given.

ExampLE 1. Consider a family .# of all (n— 1)-dimensional closed sides of
an n-dimensional simplex. Here ker (| .#;) # @ for ie (n+1), but ker(|) %)
= @. This shows that the positive integer n+ 1 is the best possible.

ExampLe 2. Let # be a family of n+2 closed convex cones
C,,..., C,.,, all with the apex at the origin, such -that J.# covers R" and
U-A; ie{n+2), does not cover R".

Now we consider a family .# of sets S; which take the form S; = C;\|0].

The union of any n+1 members of .# is a starshaped set because, as is
easy to verify,

—S; cker(U#;) for ien+2),
where —S;, = | —x: x€8S;]. In this case we have
U# = R"\0},

and thus ker({J#)= Q. This shows that the closedness assumption in
Theorem 2 cannot be omitted.

ExampLE 3. Let .# be an infinite collection of closed sets S,, S,, ...,
where

Si=1(xq, X2, ..., X,)ER™ 0< x; i, x; <E(x;+1)—x,)

and E(x) denotes the greatest integer not exceeding x.

It is easy to check that the union of any n+1 members of # is a
starshaped set, but ker ({).#) = @. This shows that the finiteness condition in
Theorem 2 is essential.
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