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1. Introduction. The space X considered in this paper is always assumed
to be an arbitrary dendroid, i.e., a hereditarily unicoherent and arcwise
connected metric continuum. The hereditary unicoherence of X means that
for every two subcontinua K and L of X the common part KNnL is a
continuum. The arcwise connectedness of X states that for any two points a
and b of X there exists in X an arc joining these points a and b. By the
hereditary unicoherence of X, this is the unique arc between a and b in X,
and so it can be denoted by ab.

The multifunctions F of X into itself will be considered which assign to
each point xe X a non-empty closed subset F(x) of X. Such a multifunction
F is called upper semi-continuous if for every closed subset A — X the upper
counter-image F~!(A4) = {xeX: F(x)nA # @) is closed. F is called lower
semi-continuous provided that the counter-image F~!(A) is open whenever A
is open. For the metric compact space X the upper semi-continuity of F
means that for every convergent sequence of points x,e X (n=1, 2,...) the
inclusion

Ls F(x,) < F(limx,)

holds (see, e.g., [2], p.- 61) and the lower semi-continuity of F means that

F(limx,) < LiF(x,)

(see, e.g., [2], p- 62).

A point xe X is called a fixed point of a multifunction F of X into itself
if xe F(x). Two classes of multifunctions F of X into itself are the most
important for the theorem stating that there exists a fixed point of F. First,
upper semi-continuous multifunctions F, called c-functions, which assign to
each xe X a subcontinuum F (x) of the continuum X. Second, multifunctions
F of X into itself which are continuous, i.e., both upper and lower semi-
continuous. In these two cases the fixed point theorem for a dendroid X was
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proved by Ward, Jr. (see [4] and [5]), who used an order theoretical method
by a characterization of an arbitrary dendroid X in terms of ordered sets.

The aim of the present paper is to give other proofs of those two
theorems which both will be a modification of the method which I have
developed in my fixed point theorem [3]. Such a modification will give, may
be, a direction for a generalization of the theorem of Ward, Jr. [4] (for
continuous multifunctions) from dendroids to A-dendroids, i.e., hereditarily
unicoherent and A-connected continua (see [1]).

2. Preliminaries. For any two arcs ab, ac — X with the same initial point
a, we define the association ab < ac (see [3], p. 106) if ab nac # (a), 1e., if
ab nac is an arc non-degenerate to one point a. The association < is an
equivalence relation in the family of all arcs with the same initial point (see
[3], p. 108, Proposition 2) and, of course, ab < ac implies ab < ac for a non-
degenerate arc ab.

Since, by the hereditary unicoherence of X, for every continuum K < X

(2.1) b, ceK implies bc c K,

we have

(22) a¢K and b,ceK imply ab <ac

and, moreover (see [3], p. 108, Proposition 6),
(23) abcad and bc <bd imply ab < ac.

It is worth noting that, by (2.1), beac means that ab < ac, which is
equivalent to the equality ab u bc = ac.

If F is a c-function mapping X into itself, then the image F(K), defined
by the formula

F(K)= |J F(x) for any K c X,
xekK

satisfies the following condition:
(24) F(K) is a continuum whenever K is a continuum

(see, e.g., [5], p. 161).

If F is a continuous multifunction in X, then for every component
%F (K) of the image F(K) of an arbitrary continuum K < X and for every
xe K the inequality F(x) n €F (K) # @ holds (see [4], p. 924). It follows that
for any two continua K, L = X and for every component %F(K)

(25) KN L#@® implies that there exists a component F (L) such that
$F(K)N¥F(L) # Q.

3. The fixed point theorem for c-functions. The following theorem, due to
Ward, Jr. [5], will now be proved:
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THEOREM 1. If F is a c-function mapping a dendroid X into itself, then
there exists a fixed point of F.

Proof. For the fixed point, consider the family %, of all arcs ab = X
defined as follows: for every peab—(b) and for every qe F (p) the association
pq < pb holds.

The following four properties of families 2, will yield the proof of the
theorem.

(3.1) If a¢F(a), then for every deF(a) there exists abe P, such that
ab c ad.

For the proof of (3.1), assume that de F(a) and that an arc ab = ad
satisfies, by the upper semi-continuity of F, the equality ab n F(ab) = (b
Then for every peab—(b) and every geF(p) we have p¢F(ab) and
q, de F(ab). Since F(ab) is a continuum by (2.4), we have pgq < pd by (2.2).
But pd < pb since ab — ad, and therefore pg <pb by the transitivity of
association.

3.2 If abe?,, b¢F(b), and deF(b), then ab < ad.
Since b ¢ F (b) by assumption, the upper semi-continuity of F implies that
pPbnF(p'b)=@Q for some p' eab—(b).

For every pep’b—(b) we have peab—(b), whence ap = ab and pb < pq
for every ge F(p) by the definition of #,. From (2.3) it follows that ap < aq.
But p¢ F(p'b) and q, de F(p'b), whence pq < pd by (2.2) and (2.4). Therefore,
by (2.3), ap < ad for every pe p'b—(b). Since the union of all such arcs ap is
ab—(b), we have ab—(b) = ad, and hence ab < ad.

(33) If abubc=ac, abe P, and bce P,, then ace Z,.

Indeed, if peab—(b), then pc <pb, since ab < ac by assumption.
Moreover, pb < pq for every qe F(p) because abe #,. Hence pq < pc by the
transitivity of association. If pe bc—(c), then pc < pq by the assumption that
bc € gb'

34 Ifab= | ab, and ab,e #, (n=1, 2,...), then abe 2,.
n=1

Let peab—(b). Then there exists an n such that peab,—(b,). Therefore,
pb, < pb since ab, < ab, and pq < pb, for every qe F(p) by the assumption
that ab,e #,. From the reflexivity of association it follows that pq < pb.

To complete the proof of Theorem 1 observe that in the dendroid X for

every increasing sequence of arcs ab, — ab, < ... the closure U ab, is an arc
=1

ab (a short proof of this statement is given in [3], p. 109, Remark 2). Thus,
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by (3.1) and (3.4), and by a version of the Brouwer reduction theorem (see
[3], p. 115), for a¢ F(a) there exists an arc ab maximal in #,. Then from
(3.1)«3.3) it follows that beF (b).

Indeed, by (3.2), if b¢ F(b), then ab < ad for every de F (b), and, by (3.1),
there exists bc = bd such that bce #,. Thus ab U bc = ace 2, by (3.3), which
contradicts the maximality of ab in Z,.

4. The fixed point theorem for continuous multifunctions. Let F be an
arbitrary continuous multifunction of the dendroid X into itself. For an
arbitrary arc ab = X a sequence of components ¥F (b;,_, b;) of F(b;_b;) for
j=1,2,... (b =a) will be denoted by [%F (a), “F (b)] provided that the
arcs ab; constitute a countable partition of ab, i.e.,

ab,_, & ab; for every i and | ab; = ab—(b),
i=1

and that the following chain conditions hold:
€F(a) < ¢F(ab,), €F(b;_,b)6F(bb;s,) # D,
Ls 6F (b;—, b)) N €F (b) # Q.

Then we say that abe 2,[4F(a), €F (b)] if there exists a chain
[¥F (a), €¢F (b)] such that for every i=1,2,... and every peb;_,b,—(b)
there exists qe ¢F (b;_, b;) with pq < pb.

Lemma L. If a¢F(a), then for every component €F(a) and every
de ¥F(a) there exist an arc ab cad and a component €F(b) such that
abe #,[6F (a), 6F (b)].

Proof. Let
4.1) de ¥F(a)
and let
4.2) ab c ad

be an arc such that ab N F (ab) = @ by the upper semi-continuity of F. Then
taking the component $F (ab) of F(ab) which contains ¥F (a) we have

4.3) ab N 6F (ab) = @,
(4.4) %F (a) — GF (ab).

Take an arbitrary countable partition U ab; of ab and define a chain

[€F (a) &F (b)] for some %F(b) as follows:
Let ¢F (ab,) denote the component of F(ab;) which contains %F (a)
Take, by (2.5), a component %“F (b, b;) of F(b,b,) such that

@F (b, b,) N €F (ab,) # @
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and, by induction, let 6F(b;b;,,) N 6F(b;—, b;) # @. Since b,_, b; —(b), by
the upper semi-continuity we obtain ‘

Ls €F (b;-; b) < F(b).

Thus for ¢F(b) we take in F(b) the component of an arbitrary point of
Ls €F (b;i- 1 by).

aD
Since the union () éF (b;_, b;) is connected and contains ¥F (a), by (4.4)
i=1

we get

%F(b;_, b)) = 6F (ab).

1

i Cs

Now, let peb;_ b;—(b;). Then for an arbitrary qe éF (b;_, b;) we have
q € ¢F (ab). Moreover, d e $F (ab) by (4.1) and (4.4), and p¢ %F (ab) by (4.3). It
follows from (2.2) that pg < pd. But pd < pb in view of (4.2), and therefore
pq < pb by the transitivity of association.

Lemma 2. If abe 2,[%F(a), 6F (b)), de $F (b) and b¢ F (b), then ab L bd
= ad.

Proof. Let p’bnF(p'b) = @ for some p'cab—(b) by the assumption
that b¢ F (b) and the upper semi-continuity of F. Then taking the component
%F(p'b) which contains the union () %F(b;,_,b;), where i, is the first

i=ig
integer such that b; _,ep’b, we have

(4.5) pPbn%F(p'b) =0,

4.6) () %F(b,_b) = 6F(p'b).

i=ig
Moreover, we have

Ls6F(b;-1b)n6F(b)#® and Ls%F(b,_,b) < 6F(p'b),

and therefore by (4.6) we obtain
4.7 éF(b) c $F(p'b).

Let pep’b—(b) < ab—(b). Then peb;_, b;—(b;) for some i > iy, and for
some qe 4 F (b, b;) we have pg < pb by the definition of 2,[%F (a), €F (b)].
But peab implies ap = ab, and hence ap = aq by (2.3).

Simultaneously, ge $F (p' b) by (4.6), de ¢F (p'b) by (4.7), and p¢ €F (p'b)
by (4.5), whence pg < pd by (2.2). It follows from (2.3) that ap < ad for every
pep'b—(b). Since the union of all such arcs ap is ab—(b), we get ab
—(b) = ad. Therefore ab c ad, i.e., abu bd = ad.

n
2 — Colloquium Mathematicum 52.2
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LEMMA 3. Let abubc = ac. If
abe #,[¢F(a), tF(b)] and bceP,[¥F(b), CF(c)],
then ace P,[%F (a), €F (c)] with a chain [€F (a), €F (c)] joining €F (b) and
%F (c) (which means that %F (b) = €F (c;—,c;) for some i).
Proof. We will construct the desired chain [¥F (a), €F (c)] replacing all

components €F(b;_,b;) of the chain [¥F (a), ¥F(b)] by the component
%F (ab) such that

@F (b, , b)) = 6F (ab).

_s3

4.8)

i=1

Since

LséF(b,_,b)n6F(b)#® and %F(b) < %F(bc,),
we have %F (ab) N €F (bc,) # @. Therefore, €F (ab), €F (bc,), €F (c,c,),...
constitute the chain [¢F (a), €F (c)] joining ¥F (b) and €F (c).

Now, to prove that ace 2,[%F (a), €F (b)], let peab—(b). Then there
exists an i such that peb;_,b;—(b;), and hence pb~<pq for some
qe€F (b;-, b;). Simultaneously, pc < pb, since ab < ac by assumption, and
therefore pq < pc by the transitivity of association <. Moreover, qe €F (ab)
by (4.8).

LEmMMma 4. If

where ab, & ab,,, and ab,e #,[€F (a), 6F (b,)] for every n=1, 2,... and if
the chain [€F (a), €F(b,.,)] joins €F(b,) and €F(b,.,) for every n
=1,2,..., then abe #,[€F (a), €F (b)] for some component €F (b).

Proof. For the given partition ab—(b) = |J ab, we will define the
n=1

desired chain [€F (a), €F (b)] of components €F (-b,, b,,;) forn=0,1,2,...
(bo = a).

Take, for ¥F (ab,), the component of F(ab,) which contdins the union
G ¢F(b;—,b;) of the components of the chain [¥¢F(a), ¢F (b,)]. Then,
i=1
obviously, €F (a) = €F (ab,). Now assume, by induction, that a sequence of
components %F (ab,), €F (b, b,),..., €F (b,-,b,) is defined so that

GF(b;-1b)N€F(bjb.,) #® and GF(b;b;,)NGF(bi.,) # D
fori=1,2,...,n—1. Let ¢F(b,b,.,) denote the component of F(b,b,,)
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which contains the union .U GF (bp+1,i-1bn+1,) of some componenfs of the

chain [¥F(a), €F (b,+1)], ;v"here i, is such that

€F (by) <= 6F (bn+1,i,-1bn+1,)-
Then
GF (bp-1bp) N GF (bybyy)) # @, GF(bpsy) NEF (bpbpyy) # 0

and

(49) U (6F(bn+ l.i—lbn+1,i) < %F(bnbn+ l)'

1=,

The sequence of components ¢F(b,b,.,) so defined has the property
that

Ls4F (b, b,,,) N €F(b) # O

by the upper semi-continuity of F. Thus this sequence forms a chain [¢F (a),
GF (b)].

Now, let peb,b,,; —(by+,). Then peb,yyi—1 byt yi—(bn+y,) for some i
= i,, and therefore there exists g€ €F (b,+,i-1 by+1,) such that pg <pb,, ;.
Since pb,., < pb, we have pg < pb by the transitivity of association <. By
(4.9) we obtain qe 6F(b,b,+,).

The theorem of Ward, Jr. [4], can now be proved.

"THEOREM 2. If F is a continuous multifunction mapping a dendroid X into
itself, then there exists a fixed point of F.

Proof. Since for every increasing sequence of arcs ab, & ab, & ... the

closure |) ab, is an arc ab in the dendroid X, by Lemmas 1 and 4 and by a
n=1

version of the Brouwer reduction theorem for a¢ F(a) there exists an arc ab

which is maximal in 2,[¥F(a), €F(b)] in the sense that there exists no

greater arc ace #,[€F (a), ¢F(c)] with the chain [¢F(a), ¥F(c)] joining

€F(b) and ¢F(c). Then from Lemmas 1-3 it follows that be F(b) for the

maximal arc ab.

Indeed, if b ¢ F (b), then ab < ad for every d e €F (b) by Lemma 2, and by
Lemma 1 there exist an arc bc = bd and a component ¥F(c) such that
bce 2#,[€F (b), €F (c)] for some chain [¢F (b), ¢F (c)]. Thus, by Lemma 3,
ace #,[€F (a), €F(c)] with the chain [¢F (a), €F (c)] joining ¥F (b) and
%€F (c), which contradicts the maximality of ab.
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