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Products of complete Boolean algebras find application in the theory of
models of the axiomatic set theory. The iteration of Boolean-valued models
is closely connected with products of the underlying Boolean algebras. The
usual algebraic definition of a complete product # of algebras .o/, .«
requires the algebras ./, ./, to be independent in %. However, as L.
Bukovsky pointed out in [2], from the set-theoretical point of view it seems
more appropriate to consider the localized properties of subalgebras .«/,, </,
in & than the total ones. The local independence (see the definition below) of
factors of,, o/, in # is equivalent to the separation of the corresponding
model classes. In the same way, the local disjointness of the factors is
corelated with the disjointness of the model classes (Theorems 1, 2 in [2]).

In this paper we investigate the structure and the properties, especially
the local ones, of complete Boolean products. As consequences we give
answers to some questions concerning the (m, 0)-products in [7]. Other
consequences are connected with models of the set theory. The paper is
organized as follows.

In the introduction we bring the notion of complete Boolean product
and its basic properties, especially in comparison with (m, 0)-products.

The first section is devoted to local properties. It is shown there that
any complete product can be decomposed into its locally independent and
locally nowhere independent part. The main result says that for independent
products the local independence and the minimality are equivalent (Theorem
1.9). The final part of the section discusses the implications between the
notions of independence, disjointness, local independence and local
disjointness.

In the second section examples of complete Boolean products are given
for two special algebras: Cantor algebra ¥ and random algebra #. Algebra
% is formed from the field of all Borel subsets of the unit real interval
factorized by the ideal .#, of all meager sets. Analogous construction using
the ideal .#, of all sets of zero measure gives algebra #. The main results of
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the section state that there is a product of algebras #, %, the so-called
quadratic product, which is incomparable with the minimal product
(Theorem 2.5). The quadratic product of %, % is not locally independent, but
it is locally disjoint.

The third section shows the connection of localized properties of com-
plete products with properties of pairs of Cohen or random numbers.

The notions and denotations used in this paper follow, in general, the
terminology used in [7]. However, there are some differences, e.g. we use A,
v, 0, 1 for Boolean operations and bound elements. By 4 we denote the
projection of an algebra # onto its complete subalgebra .o/, defined by
h?(X)= \{Ae o; A> X}, XeAB. For set-theoretical notions see e.g. [6].

An ordinal we consider as the set of all lesser ordinals, a cardinal is an
initial ordinal. The set of all functions from A to B is denoted by “4B. Thus,
@2 is the set of all infinite sequences of 0, 1. The set of all finite sequences of
0, 1 is denoted by <“2. For fe“4B we write A = 2(f). “B can be considered
as a power of the topological space B with the discrete topology. The base
for the topology in “B is formed by sets u(¢) = {fe“B; f 2 ¢} for 2(¢) < 4,
card 2(¢) < w. The field of all Borel sets in 4B is denoted by %(“B).

The complete product of Boolean algebras .o/, o/, we define as a triple
(i, iy, %), where

(a) £ is a complete Boolean algebra,

(b) iy, i; are complete injections of /,, .o/,, respectively, into 4,

(©) io(y) viy(#,) completely generates 4.

The complete independent product is a complete product satisfying, in
addition,

(dina) i0(Hp), iy () are independent in £.

Note. We often consider .«/,, ./; to be regular subalgebras of # and
ip, i; to be their identity injections. Then we say simply that £ is a complete
(independent) product of subalgebras .«/,, </,.

For given algebras .o¢,, .</;, the complete product (iy, i;, .4) need not
be determined uniquely. The same is valid for complete independent prod-
ucts. If (ip, i, #) is another complete product of ,, &/;, we say that
(iy, iy, B') < (io, iy, #) holds, if there is a complete homomorphism h: #
— &' such that iy = hiy, i} = hi. If, moreover, h is an isomorphism, we say
that the products (ig, iy, &), (io, i1, #’) are isomorphic.

The above definitions concerning complete products are quite analogous
to the well-known definitions of m-complete independent products (shortly:
(m, 0)-products), where m is an infinite cardinal number. R. Sikorski in [7]
describes the structure of the set P, of all (m, 0)-products of given Boolean
algebras. In P, always there exist the so-called minimal product and
maximal product. The minimal product is a minimal element in P,. In this
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paper we show that the minimal product need not be the least one in P,
(Theorem 2.6). The maximal product is the greatest element in P,,.

Let us compare P, with the class P, of all complete independent
products for given ./, .«/,. It is shown in [4] that, when the algebras .<7,,
&/, are isomorphic to the Cantor algebra %, then there are complete
independent products of arbitrary big cardinality. Therefore, the maximal
complete independent product of «/,, o/, — the greatest element in P, —
does not exist and P is a proper class. The same is valid, if «/,, o/, are
isomorphic to the random algebra 2.

In [7] a bijective correspondence between (£, .#, m)-extensions of
ordinary (i.e. finitely complete) product .o/ of algebras .o/, .o/, and (m, 0)-
products of o/, o/, is described. This correspondence remains valid also for
the complete case (the notion of (£, .#)-complete extension being understood
as the natural extrapolation of the notion of (.#, .#, m)-extension) because
any complete independent product # can be considered as an (m, 0)-product
for some cardinal m (it suffices to take m such that # satisfies the m-chain
condition).

By definition, the minimal complete independent product (or simply: the
minimal product) of algebras ./,, .o/, is the completion of the ordinary
Boolean product o of o/, /. Considering # as a (m, 0)-product for
proper my, we get by [7] that the minimal product is the only such product
in P, or in P, that o/ is a dense subalgebra of #. Further, the minimal
product is a minimal element in P_,, but not necessarily the least one,
equally as it is in P,.

If the algebras ./, ./, are atomic, and complete, then they are
isomorphic to the fields 2(X,), 2(X,) of all subsets of some sets X,, X, and
any complete Boolean product # of "./,, .o/, is atomic with the set of atoms
XoxX,. Thus 4 is the only element in P,. The analogous statement does
not hold for infinitely many factors. The counter-example is given by the so-
called collapse algebras, which all have countably many complete generators
([8D).

More interesting is the situation when .o/,, ./; are not atomic algebras.
However, it is easy to see that, if there are some atoms in </, or in &/, and
if ofy, o, are complete, then o/, o/, or both of them can be decomposed
into the direct sum of its, or theirs, non-atomic and atomic parts and any
complete independent product of o/, .o/; can be considered as a direct sum
of some products of these parts.. The only direct summand which is not
determined uniquely is the one constructed from the non-atomic parts.
Therefore, it seems reasonable to investigate the extent of P, for non-atomic
factors. Mostly we shall use the algebras ¢ or #.

1. Local properties. The idea of localization in Boolean products was
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used, as we have mentioned above, by L. Bukovsky in [2], when he was
studying the cogeneric extensions. The cogeneric extensions are (two or
more) Boolean-valued models with a common generic ultrafilter. As the
properties of a generic extensions are determined by the elements belonging
to the generic ultrafilter only, so in order to obtain an adequate characteriz-
ation of cogeneric extensions, dense subsets of Boolean algebras must be
investigated. The main tools will be the following definition schemes.

Let X be a property of two subalgebras in a Boolean algebra. We shall
say that subalgebras .o/,, ./, of an algebra # are locally X in 4, if the set
Lx={UeB; oAo)U, o,|U are X in #U} is dense in &, ie. if for any
We®B, W#0 there is Ue Py, US W, U #0.

Substituting the notion “independent” for X we get the definition of the
local independence. From the property “disjoint” (subalgebras ./,, ./, are
disjoint if they have no common elements but zero and unit) we get the local
disjointness.

The triple (iy, iy, B) we call a complete X product of algebras of,, o, if
it is a complete product of /,, «/, and

(dy) io(Af), iy () are X in A.

This scheme involves the definitions of the complete independent, the
complete disjoint, the complete locally independent and the complete locally
disjoint product. Further, we shall call subalgebras .«/,, <#; of # nowhere
independent, or nowhere disjoint, if for any Ve 8, V# 0 the algebras o/,|V,
&,|V are not independent, or not disjoint, respectively, in 4| V. These notions
give other types of complete products.

The investigation of local properties we begin with a general principle of
localization. For a subset x of a Boolean algebra # we denote x'
={Ye®; (VV<Y)V#0 - Vé¢x}.

THEOREM 1.1. If B is a complete Boolean algebra and x < A, then there
is a uniquely determined element X € # such that x is dense in #X and x' is
dense in #—X.

Proof. It is easy to verify the following propositions:
(i) xux’ is dense in B, xNx' < {0},
(i1) x' is convex downwards in %,
(i) if x =y < %, then x' 2y,
(iv) if x is convex downwards in 4, then x’ is equal to the orthogonal
complement x' = {Ye #:(VXex)X A Y =0},
. (v) for x convex downwards, the transformation x - X = x"* is a hull
operation, i.e. x £ X = X holds,
(vi) x is dense in 4\/%,
(vi) \/x = -\/x.
The theorem follows from (vi), (vii), if we set X =\/X. O
From the principle of localization we can derive localization theorems
on complete products such as
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THEOREM 1.2. If # is a complete product of subalgebras of,, o/, then
there is X € B such that:

B X is a complete locally independent product of subalgebras ofy|X,
21X

#— X is a complete locally nowhere independent product of subalgebras
‘MOI_Xa Jﬂll_x

Proof. It suffices to take x = &, where X means “independent”. O
For independent products we get additional information.

THEOREM 1.3. Let # be a complete independent product of subalgebras
Ao, o, and let X have the same sense as in Theorem 1.2. Then at least one of
the following four possibilities takes place:

Aol X, oAo|— X -are isomorphic to oA,

2,|X, | —X are isomorphic to o,

Aol X is isomorphic to o, and /,|X is isomorphic to ,,

.ol — X is isomorphic to of, and of\|— X is isomorphic to <.

Proof. Let us denote X, = h**(X), Y, = h™*(—X) for k =0, 1. Then
we ‘have X, v ¥, =1 and

Xo—Y)A(Y;=X)< —YorA —X, <X A—-X=0.

Using the independence we get Xo—Y,=0o0r ¥, - X, =0, ie. Xo< Y, or
Y, < X,. That gives Y, =1 or X; = 1, analogously we can derive that X,
=1 or Y; =1 holds. By combination we get the four cases of the theorem
(evidently X, = 1 implies that .o/ X is isomorphic to .o/, analogously for Y,
=1). 0O

The construction accomplished in Theorem 1.1 is similar to the con-
struction of polars in partially ordered sets described by F. Sik in [10]. A
construction similar to Theorem 1.2 is implicitly involved in the proot o1
Theorems 1 and 2 in [2]. By further analysis of these proofs we can derive
the following result.

THEOREM 1.4. Let n be an infinite cardinal number. If of,, o, are
complete Boolean algebras, o/, being n-distributive and </, with a dense subset
M of cardinality <n, then any complete product (iy, iy, #) of oAy, oAy is
locally independent.

Proof. ‘Let (io, i;, #) be a.complete product of algebras /,,
satisfying the assumptions of the theorem. By Theorem 1.2, there is an
element X € # such that #X is a complete locally independent product of
subalgebras iy ()X, i;(,)|X and #|—X is a complete locally nowhere
independent product of subalgebras iy (.o/p) — X, i; (2;)]— X. We accomplish
the proof by showing that X =1 holds.

Proceeding by contradiction we shall assume that the element —Xis
not zero. Then there is Ue #, 0 # U < — X such that iy(A)|U, i, (#)IU
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are nowhere independent in #U. The element U, = h'*“®(U) is not zero as
well and we have U A ig(A4) #0 for any Ae oy, 0 # A < U,.
We define a function f: o, > o/, by setting

f(A)=\/{Ao€ oAo; io(Ao) Aiy(A) AU =0}
for any A€ «o/. Then we have in </,
NA{(f(4) AUg) v (=f(A) A Uy); Ae M} = U,
and, by n-distributivity of o/,, we get a function g *#2 such that
A= N1 f(4) A Uy; Ac .4} #0.

As A is an element of ./, fulfilling 0# A< U, we have V
=iy(A) A U # 0. By assumption, io(.#,)|U, i, (#/,)|U are nowhere indepen-
dent in AU, so iy(Ho)|V, i;(,)|V must be dependent. Thus, there exist
elements Aye oy, A€/, such that iz(Ag)) AV #0, i,(A) AV #0,
ig(Ag) Aiy(Ay) AV =0. Without loss of generality we may assume that
A, < A and, in view of density of #, A, e A.

We complete the proof by considering the following two cases:

I. ¢(4,)=0, ie. A< f(4,) A U,. Then we have

i1 (A) AV <i(4y) A_io("i) AU iy (4y) A io(f(A)) Aig(Ug) AU
=iy (Ay) A io(f(Al)) AU =,
which contradicts i, (4;) A V # 0.
II. e(4,)=1,ie. A< —f(4,) A Uy,. We have then
io(Ao) A iy(Ay) AU =ig(Ao) Aiy(Ay) AV =0.
Therefore, by definition of f, A, < f(A4,) holds, which is a contradiction with

Complete locally independent products are closely connected with
minimal products. From theorems describing this connection the basic one is

THeEOREM 1.5. If # is a complete locally independent product of subal-
gebras sf,, o4, then for any 0 # U e B such that o/\U, o,|U are indepen-
dent in B|U, the algebra B|U is the minimal product of subalgebras of,|U,
o4|U.

Proof. We define
B=1{Ao A Ay; Age Aoy, Aye oy}, B={\A, \/ o; A< B}
and prove the following claim.
Claim. & is dense in %.

It follows from the claim that any element Xe % is of the form X
= \/Z for.-some & < &. Thus, & is a complete subalgebra of 4, containing
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oo oy, therefore A =48 holds. For any 0#Ue# the set
{U A X; XeB) is dense in #U. If, moreover, .o/o|U, o/,|U are independent
in #)U, then AU is the minimal product of subalgebras o/,|U, o/,|U. In
this way the claim implies the assertion of the Theorem.

To prove the claim we show that

() for any o = 4, such that Ao/ # 0, there is Xe %, 0# X < \o.

Let us assume that o/ is a subset of # with non-empty intersection.
From the local independence of «/,, «/; in # we have an element
0£U< /\&/ such that .o/,|U, o/,|U are independent in #U. We denote

9"0={A€.,ofo;AAU=O}, g‘l={A€¢dl;A/\U:0}.

For any Ae Z, we have A < —U < 1, therefore \/“Ofl”o =\/*Z, # 1.
So there is 0 # X, € o/, such that X, < — A holds for any A€ &,. Then, for
any Ay€ 4, the assumption Ay A Xy # 0 implies Ay¢ %, ie. Ag A U #0.
Analogously, there is 0 # X, € o/; such that for any A4, € .o/, the assumption
A, A X, #0 gives A, ¢%,, i.e. A; AU # 0. Using these properties of X,,
X, and the independence of .«/y|U, o/ |U in BU, we get for any A, € .o/,
Aje of; that the assumption Ay A Xy#0, A; A X;#0 implies
Ay A A AU #0 and clearly, also Ao A A; A B# 0 for any Be .o/ (it is
U< A< B).

Now, we are prepared to prove that X = X, A X; < /\ &/ holds true.
Proceeding by contradiction, we assume —B A X, A X, # O for some Be .«/.
As B belongs to %, there must exist 0 # Ag€ o/, 0# A, € o/, such that
Ay A Ay < —B A XoAX,. Then we have Ay A X #0, A; A X, #0 but
Ao A A; A B=0. This contradiction proves the proposition (x). O

In view of Theorem 1.5 a question arises, which of the elements U, in a
complete locally independent product # of algebras .«/,, .«/;, have the

property that o/ |U, o/,|U are independent in #|U. The answer is given
by

THEOREM 1.6. If # is a complete locally independent product of subal-
gebras of,, of,, then any element U € # such that o/o\U, o/,|U are indepen-
dent in B|U is of the form U = Xy A X, for some X,€ o4y, X,€ o,.

Proof. Let us suppose that o/,|U, o/,|U are independent in #{U. Let
B, Xo, ¥, have the same meaning as in the proof of the previous theorem.
We denote Xo = —\/Zo, X; = —\/Z,. Again we have 4y A A; AU #0
for any Ay€ o,, A, € o, such that A, A Xy #0, A, A X, # 0. By the claim
of the previous theorem, & is dense in % =4 It implies that
~UAXoAX; =0, ie. XoAX,;<U. On the other hand, we have
UA\Zo=0UA\Z,=0ie USXy, USX;, USXoAX,. O

Using the notion of the localized minimality (a complete product # of
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subalgebras .o/, .o/, is locally minimal if the set {U e #; #|U is the minimal
product of oZo|U, «,|U} is dense in &) we can formulate Theorem 1.5 in the
following way.

THEOREM 1.7. Any complete locally independent product is locally
minimal.

Combining Theorems 1.2 and 1.7 we get

THEOREM 1.8. If # is a complete product of subalgebras <f,, </,, then
there is X € # such that

B X is a locally minimal product of o/o|X, o|X;

B — X is a complete locally nowhere independent product of /o] — X,
o |- X.

Under assumption of independence, Theorems 1.5, 1.6 can be expressed
in a stronger form.

THEOREM 1.9. A complete independent product # of subalgebras </, </,
is locally independent if and only if it is the minimal product of o#/,, s#/,. In
that case, for any U € A, the algebras </o|U, o/,|U are independent in BU if
and only if U is of the form U = Xy A X, for some Xoe Ay, X €HA;.

Remark. The first part of Theorem 1.9 was found by analyzing one
result on cogeneric extensions proved by L. Bukovsky (see [3]) using the
method of Boolean-valued models and generic ultrafilters.

Theorems 1.4, 1.9 give as a consequence

THEOREM 1.10. Let n be an infinite cardinal number. If o/, 4, are
complete Boolean algebras, o/, being n-distributive and .o/, with a dense subset
M of cardinality < n, then there is exactly one complete independent product
of /o, <y, the minimal one.

In the rest of this section we discuss the relations between the
notions of independence, disjointness, local independence and local disjoint-
ness of complete products. It is easy to see that independent subalgebras
must be disjoint. The same implication is valid for localized notions.

We shall show that except these two trivial implications no other
implication between the four notions takes place. It is a consequence of the
following four theorems.

THEOREM 1.11. There exists a complete disjoint product which is not
independent.

THEOREM 1.12. There exists a complete locally disjoint product which is
not locally. independent.

THEOREM 1.13. There exists a complete independent product which is not
locally disjoint.
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THEOREM 1.14. There exists a complete locally independent product which
is not disjoint.

The situation is described by the following diagram (the full arrows
correspond to valid implications, the interrupted arrows to false ones).

Independence_ 43 194 Local independence
A S P A
: \\\ rd < :
11 P .12
1 e ~ |
LY« ]
Disjointness Local disjointness

The implications corresponding to the arrows which are not drawn on
the diagram, are false. For example the independence does not imply the
local independence, because it would be in contradiction with 1.13. By the
same reason, the disjointness does not imply the local disjointness. Theorem
1.14 has analogous consequences in the converse direction. .

Proof of Theorem 1.11. It suffices to take any complete independent
product # of subalgebras .o/,, .«/; which are not two-elemented. We take
elements A,€ oy, A; € o/, different from 0 and 1 and set 4 = —(A4, A A,).
Then #|A is a complete disjoint product of .o/y|4, o#,|A which in addition
are isomorphic with o/, .o/,, respectively. O

The proofs of Theorems 1.12, 1.13 and 1.14 we give in the next
section where we present various examples of complete products for
algebras 4, A.

2. Products of algebras ¢ and #. The first section was devoted to
investigation of properties of complete Boolean products. With exception of
the minimal product, we left open the question of existence of complete
products. This question will be considered now. We bring several complete
Boolean products using the algebras ¢ and # as factors and investigate their
properties. The method of construction is based on the following theorem of
rather technical character.

THEOREM 2.1. Let be fe“w, then for any @€ ~“2 we define the function
@, by setting ¢, (f (k) = @(k) for any ke 2(¢). If f is an injection, then there
is exactly one complete injection i: € — € such that for any ¢e =“2 it is
i([u(@)le) = [u(@,))¢. Moreover, if we denote X = [u(y)]y for some Y e =“2,
QW)NH(f)#0, and if ix: € - ¥|X denotes the natural homomorphism
A—A A X, then ixi: € — 6]X is also a complete injection. The proposition
remains valid, when the algebra € is replaced by the algebra .

Proof. We define a mapping i: 2(“2) > 2(°2) as follows: i(A4)
= {ge®2; gfe A} for any A = 2. It is easy to verify that i preserves set
unions and intersections and that i also preserves properties of sets to be
open, borel, or of zero measure. Further, for any ¢ e ““2 we have i(u(p))
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= u(¢,), thus by factorization of i|#(“2) by the ideal £, or F4 we get the
desired injection i: 6 — €, or i: # — R, respectively. It is clear that in both
cases the injection is complete and uniquely defined.

To prove the second part of the theorem, it suffice to show that, in
denotation X = [u(Y)]e, or X = [u(¥)]a, for y €2, new, 2(y)n ¥ (f) = Q,
the mapping iy: € — %X, or ix: # — A\ X, respectively, is injective. For € it
is a consequence of the fact that the set {[u(¢)]¢; @€ ““2} is a base in % and
that for any ge <“2, 2(¢,) N 2(Y) = @, ie. i(u(p)) nu(¥) # 0 holds. For #
we have the measure u:

p(i(u(@) nu@) =2""p(ue)

thus for Ae B(°2) it is u(i(4) Nu))=2""u(4). O

The main application of Theorem 2.1 will be in defining a special
complete product (i¥, i¥, %) of the algebras %, 4, or (i, i¥, #) of R, X,
respectively, which we shall call the quadratic product. Roughly speaking, the
quadratic product of €, € or &, A, is the algebra of all borel subsets of the
unit square in the real plane factorized by the corresponding ideal of all
meager sets, or sets of zero measure, respectively. This is not said very
exactly, because the mentioned algebra is isomorphic to %, or to %, so the
essential point is how the factors are embedded into it. Geometrically, the
embeddings can be described as the maximal inverse mapping to the
orthogonal projections of the square onto its edges. In the arithmetical
language, we represent each point by a sequence of 0’s and 1’s and then we
use even members of the sequence for the first projection and odd members
for the second one. The detailed definition sounds as follows.

We define the functions f,, f; € “w by setting fo(k) = 2k, f;(k) = 2k+1
for any kew. By Theorem 2.1, the functions f,, f; induce complete em-
beddings i¥, i¥: € - %, i, i?: # > R such that for any pe <“2, te2 it is

iy ([u (©)]e) = [“(‘Pf,)]w

and

Iy ([“ (‘P)]a) = [“(‘Pf,)]gr

THeOREM 2.2. The triple (i§, i¥, €) is a complete independent product of
the algebras €, €.

Proof. It suffices to verify that i (%), i¥ (%) are independent subalgebras
in ¥ and that their union completely generates %. These two prepositions are
consequences of the fact that for given new, the pairs (¢, Y)e"2 x"2 cor-
respond in one-to-one manner to the elements 3€2"2 by relation 9
= (¢(0), ¥ (0), (1), ¥(1),...). This relation implies

ig ([u(@)]e) A if ([u@)]e) = [u(@r)]e A [uWys)]e = [¥(9)]e-
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Moreover, we use the fact that the set {[u(9)]¢; 3€ <“2} is a base in 6. O

THEOREM 2.3. The triple (i3, if, #) is a complete independent product of
the algebras X, X.

Proof. The proof is similar to the previous one, with the exception
that the set {[u(9)]q; 3€ <“2} is not a base in %£. We shall find another base.
We define Q as the set of all unions of the form @ = () {®,; new} where it is
@, < "2 for any new and where ¢ e ®, implies ¢lke @, for any k < new. For
PeQ, te2 we denote

U®) =N {U{u(p); ped,}; newl,
P, =195, PP}

The weak w-distributivity of # implies that the set {[%(P)]y; P} is
a base in #. There [%(®)]4 # 0 holds if and only if u(#(®)) >0, ie. if

limcard®,-27" > 0.
By an easy calculation we get for @, ¥e€Q, u(%(®)) >0, u(%(¥)) >0
that

u(%(®s) N U(¥y,)) = limcard @, -card ¥, 27" > 0

holds. Therefore, the subalgebras iy (%), i?(#) are independent in #. The
complete genericity is proved in the same way as in Theorem 2.2. O

The just described quadratic products (i§, i¥, 6) and (i7, i?, %) we shall
investigate from the point of view of the local independence and of the local
disjointness. We compare the quadratic products with the minimal products
of the same algebras. However, before doing so, we show another use of
Theorems 2.1 for the construction of a complete locally independent not
disjoint product and of a complete independent not locally disjoint product.
These examples will provide the proofs of Theorems 1.13 and 1.14.

Proof of Theorem 1.14. We define mappings f,, f; €“w by setting
Jo(k) =2k for any kew and f,(k)=0 for k=0, f,(k) =2k—1 for k >0,
kew. The injections iy, i;: 4 — ¢ are induced by f,, f; following Theorem
2.1. We show that (i, i;, %) is a complete product of %, ¥ with the desired
properties. The subalgebras iy (%), i, (4) are not disjoint in % because

io (4((0)) = i, (u () = (0))

holds. (Symbols (0) and (1) denote one-element sequences with the only
element O, 1 respectively.) To prove the local independence of iy (%), i, (%) it
suffices to show that for any ¢@€"2, n>0 the subalgebras i,(%)u(y),
iy (®)lu(p) are independent in Flu(p). If Y, ye <2 are such that
io(u() A u(p) #0, i;(u(x) A u(p)#0 holds true, then the functions Vsor
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Xy, are compatible with ¢. That implies ¢ (0) = x(0) = ¢(0) and therefore for
3 =(e(0), x(1), ¥(1),...) we have

io(u(W)) A iy (u(n) = u(Q) # 0.
Finally, the subalgebras iy (%), i, (4) completely generate %, because for

any 9e <“2 there are ¥, ye <2 such that it is 9 =(y(0), x(1), ¥(1),...)
= (x(0), x(1), ¥(1),...) and therefore

u(9) = iou@)) A iy (u(). O

Proof of Theorem 1.13 is similar to the previous one. The mappings
fo, f1, f€“®w are defined by fo(k) =2k+1, fi(k)=2k+2, f(k)=k+1 for
any keow, the injections

i$: € - 6u(0), it: €—6u(0), i*: ¢ %u()
are induced by f,, f;, f, respectively, following Theorem 2.1. We define

injections iy, i;: € > % as the direct sums of mappings i, =id+i* i,
= if+i*, i.e. we have

io(u(@)) = ulesy) v uley), i(u(e))=ulps,) v uley)

for any @ e =“2. We show now that (i, i;, é) is a complete product of 4,
which is independent but not locally disjoint.

The local not-disjointness of iy(%), i, (¥) in ¢ follows from the fact that
the mappings iy, i; coincide on u((1)) (they both are equal to i* there). The
independence of iy (%), i, (%) can be verified analogously as the local inde-
pendence in the previous proof. {

To prove that € is completely generated by iy (%), i; (¥) we notice first
that

w(D) = —u(©) = A {V{iolu (@) £ is (w(9); 0€*2}; kew})
holds. The rest is obvious. O

Now we come to the investigation of the local properties of the
quadratic and of the minimal product of algebras %, ¥ and %, %X.

THEOREM 2.4. The quadratic product (i§, i¥, %) of algebras €, € is locally
independent.

Proof. The assertion follows from the fact that the set {u(¢); p€ ~“2}
is dense in €.

CoroLLARY 1. The quadratic product of algebras %, € is locally disjoint.

COROLLARY 2. The quadratic product of algebras €, % is isomorphic with
their minimal product. '

Proof. By Theorem 19. O
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The fact that for algebras %, ¢ the minimal and the quadratic product
are isomorphic, pointed out L. Bukovsky in [2]. For algebras #, # he
proved that the mentioned two products are not isomorphic. We strengthen
this result in the following way.

THEOREM 2.5. The quadratic product (i, i, ) of algebras R, R is
incomparable with the minimal product (i, i, #RR) in the class P, of all
complete independent products of algebras R, A.

Proof Proceeding by contradiction, let us assume that, in P,
(i@, i2, RARR) < (i, i?, A) holds, ie. that there is a complete homomor-
phism h: # - Z#®%R such that i@ = hi® for ke2.

It is proved in [7],-38.B, that if N is a nowhere dense subset of the real
unit interval I and if u(N) >0, then the closed set S = {(x,, x;)el xI;
|xo—x,|€ N} has the property

(¥) for any two Borel subsets Ay, A; 1, u(AoxA;) >0 implies
u(AgxA,—S)>0.

Clearly, in I, there exists a sequence (N,; ne w) of nowhere dense subsets
such that lim u(N,) =1 holds. Using the above mentioned Sikorski’s asser-

new

tion and the well-known Fubini Theorem, we get in I xI a sequence of
closed subsets (S,; new) fulfilling (*) and the condition limu(S,) = 1. This

new

implies that in # there is a sequence of elements (7,; new) such that
limu(T) =1 holds and

(x#) for any new, Ay, A;€R, Ay, Ay #0 implies ig(Ao) A if(A;)—
-T,#0. '

We denote X = —\/Kerh and so we get the isomorphism i: #|X
- AR fulfilling h(A)=i(A A X) for any AeR. Assuming h(T,)
=i(T, A X)#0 for some new we get non-zero elements Ay, A; € # such
that i¥(Ay) A i(A;) < T, A X < T, which' is in contradiction with ().
Therefore, it is h(T;) =0, i.e. T,eKer h for any new. Then, by the complete-
ness of Kerh, we have \/{T,; new}eKerh. We have got a contradiction
with p(\/{T,; new}) = hm u(T,) = 1. The proof is complete because of the

minimality of (i, i®, .@@@) in P,. O

Theorem 2.5 gives two interesting consequences. The first one is con-
nected with the structure of P, or P, for algebras #, %, the second one
concerns the local independence of the quadratic product of #, .

THEOREM 2.6. There is no least element in the class P, (or P,) of all

complete (or w-complete, respectively) independent Boolean products of algebras
R, R.

Proof. For P, it follows directly from Theorem 2.5. For P,, we notice
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that the quadratic product of #, #, satisfying the countable chain condition
(c.c.c.), contains the ordinary Boolean product .o/ of #, %, which, in its turn,
is contained as a dense subalgebra in the minimal complete product ZXX.
Therefore, in </ and in #® A, the c.cc. is fulfilled and the minimal product
AR belongs to P,.

Remark. In fact, both Theorems 2.5, 2.6 are valid in P,, for any infinite
cardinal m.

THEOREM 2.7. The quadratic product of algebras R, R is not locally
independent. '

Proof. By Theorems 1.9, 25. O

The last theorem of this section describes the local disjointness of the
quadratic product of #, #. At the same time it presents (together with
Theorem 2.7) a proof of Theorem 1.12.

THEOREM 2.8. The quadratic product of algebras R, R is locally disjoint.

Proof. Proceeding by contradiction, let us assume that the quadratic
product (i¥, i?, #) is not locally disjoint. That means that

(%) there is a non-zero element U € # such that for any non-zero Ve %,
V< U the algebras iy (R)|V, i (R)|V are not disjoint, i.e. there exist elements
Aoy, AjeR such that 0 <if(Adg) AV =i (A) AV < V.

The element U, being Lebesgue measurable and of positive measure, can
be covered in I xI by disjoint intervals of total measure less than $u(U).
Among them, there exists an interval I, xI; such that u(loxI,) <$(Un
N(Io x1,)). Without loss of generality we may assume that IoxI, =1xI
holds and we have u(U) > 3.

It is easy to verify that

o = {AgeR; QA€ R)iF(A) AU =i (A;) A U}
is a complete subalgebra in #. Moreover, for any A,€ o/ we have u(A4,) <%
or u(Ay) >1. It is a consequence of the fact that
U= (ig'(Ao) AU)v (ig(—Ao) A U)
= (id(4o) A if(A4) A U) v (ig (= Ao) A iff(—A4y) A U)
and

1(U) < p(Ao) - u(Ay)+ p(—Ao) u(—4,).

(For 1 < u(Ap) <3 we get, by an easy computation, u(U) < 3 for any A4,.)

For A, A'e # = |{Ae of; u(A) <4} we have u(A v A') #3 So £ is an
ideal in .«/. .# preserves unions of increasing sequences and is, therefore,
complete. Let A be the maximal element in .#, then 0 # Ae s/, ANA=0
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implies u(A) >3. This leads to a contradiction with the assumption (x),
because the element — A4 cannot be divided into two disjoint parts, each of
measure > 3. The theorem is proved. O

Remark. The idea of this proof is due to J. Cichon. The original proof
will be published in [5], in a more general situation. '

3. Cohen and random reals. The localised algebraic properties of com-
plete Boolean products are connected with properties of the corresponding
Boolean-valued models, the so-called cogeneric extensions (see [2]). So the
products of algebras ¥ or # are connected with cogeneric extension by a
Cohen or random real, respectively. Properties of Cohen and random reals
from this point of view are the subject of investigation in this section.

A real number r is called Cohen, or random, over a model class M, if r is
contained in any open dense subset, or in any subset of measure 1,
respectively, of real unit interval, belonging to M. R. Solovay in [9] proved
that an extension M (r) of a model class by a real number r is isomorphic
with the Boolean model M¥, or M%, if and only if r is Cohen, or random,
respectively, over M. As it is usual, we shall identify real numbers from the
unit interval with elements of “2. The sets u(¢), e <“2 will be referred to as
rational intervals.

If M < My, M, are transitive model classes of ZFC, we say that M,,
M, are separated over M if for any disjoint sets R,, R, & M, RoeM,,
R, e M, there is a set Se M such that R, = S, R; nS = (. We say that M,,
M, are disjoint over M if MoNn M, = M.

‘In the following two theorems we give sufficient conditions for Cohen or
random extensions of a model class M, not to be separated or disjoint over
M. Later, the applications of these conditions are shown.

THEOREM 3.1. Let M be a transitive model of ZFC, let each of real
numbers ro,, r, be Cohen or random over M. If there is a partition
IN,; kew}eM of a subset N < w such that card N, = n, < w, ro|N, # r,|N,
holds for every ke w, then there exist disjoint subsets Ry, R, < w, Roe M(r,),
R, e M(ry) which are not separated over M (i.e. such that there is no SeM,
Ry =S, R, cw-39).

Proof. We denote 4, = "*2 for any kew,
N = {Ni; kew}, Ry ={ro|lNy; kew}, R, ={r|N;; ke w}.

The sets R,, R, are disjoint subsets of the countable set /'€ M.By a standard
bijection belonging to M, can R,, R, be mapped to disjoint subsets
Ry, Ry < w. Then we have Roe M(ry), R,eM(r,) and it is clear that the
non-separation of R,, R, over M is equivalent to the non-separation of R,,
R, over M.

3 - Colloquium Mathematicum L.1
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Let us assume that there is Se M such that R, < S, R, = &/ —S. We
denote S, = A, NS for kew and we get

2" "™-card S, +2 ™-card(A, —S,) =2 *-card A, =1

for any kew. Thus, without loss of generality, we may assume that for
infinitely many kew the inequality 2™ "-card S, < 4 holds.
If we denote, for jew,

uj = N{U{u(); ves}; kej} = U {(u(p); peSo xSy x ... xS;_,},

then U = (u;; je w)e M is a decreasing sequence of closed subsets in real unit
interval and their measures converge to zero. Therefore, (YU is a closed
nowhere dense subset of measure zero, belonging to M. At the same time
roe (YU holds, which is a contradiction with r, being Cohen or random
over M. O

THEOREM 3.2. Let M be a transitive model of ZFC, let each of real
numbers r,, r, be Cohen or random over M. If there is an infinite subset a < w,
ae M such that rqo(k) # ry (k) holds for every kea, then there is a real number
re M(ro) N M(r,) which is Cohen or random over M.

Proof. We denote 7o = rolaec M(ry), 7, =rilae M(r,). The restriction of
Cohen, or random number over M to an infinite set ae M is Cohen, or
random, respectively. Moreover, we have 7y (k) =7; (k)+1 (mod 2) for every
kea, ie. Fy belongs to M(ro) "nM(ry). O

Naw, we describe several cases in which the conditions of Theorems 3.1,
or 3.2 are fulfilled.

THEOREM 3.3. Let M be a transitive model of ZFC. If re“2 is a random
real over M and r,, r, are the restrictions of r to the set of all even and to the
set of all odd numbers, respectively, then there exist disjoint subsets R,
R, S w, RoeM(ry), R, € M(r,) which are not separated over M.

Proof. We shall find a partition with the properties described in
Theorem 3.1. It is evident that we can choose a sequence ({N; kew}; jew)
of partitions of w in such a way that for any j<jew the partition
{Njx; kew} is a refinement of {N;,; kew} and, in denotation card Nj, = ny,
<, the sum Y {2""*; kew} =n; exists and limn; =0 holds.

Jjew

In the real unit square “2x“2 let us denote
up = U {u(0) xu(9); 02}, w;=U {uy; kew), U= (uj; je w).
Then we have
p(u) <Y ln(p); kew} =Y {27 keo} =n;.

Thus Ue M is a decreasing sequence of open subsets of “2 x“2 with u((\ U)
= 0. As r is random over M, the pair (r,, r;) cannot belong to (U, thus,
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there is jew such that (ro,r,)¢u;. Then we have (ro, r;)¢u;, ie.
rolNjy # ri|Nj for every kew. O

Remark. In view of Theorem 2 in [2], which says that the local
independence of Boolean subalgebras is equivalent to the separation of
corresponding cogeneric extensions, Theorem 3.3 brings another proof that
the quadratic product of algebras %, # is not locally independent.

If M is a transitive model of ZFC, we say that the scale condition over
M holds if, for any function g € “w, there is a function fe€“w N M such that
f(n) > g(n) holds for any ne w. Without loss of generality it can be assumed
that f is increasing.

THEOREM 34. Let M be a transitive model of ZFC, let each of real
numbers ry, r, be Cohen or random over M. If the scale condition over M
holds, then there exists disjoint subsets Ry, Ry < w, Roe M(ry), R,eM(r,)
which are not separated over M.

Proof. If reals ry, r,€“2 differ only on finitely many places, the
theorem is trivial, because then M(ro) = M(r,) # M holds. So, we may
suppose that there exists an increasing function g € “w such that for any new
we have ro(g(n)) # ry (9(n). Let f€“w N M be the increasing function whose
existence follows from the scale condition. Then it is

fmy>gm=n f(fM)>g(f(n)=f(n

for every new. By induction through kew it is easy to show that
¥ (m) > g(f*(n)) = f*(n) for every n, kew. If we set

N, = {mew; f**1(0) > m > f*(0)}

for ke w, then we have g(f*(0))e N, which gives ro|N, # r(|N, for any kew.
By Theorem 3.1 the proof is finished.

It is well-known (see e.g. [1]), that if # is a weakly w-distributive
complete Boolean algebra in M and if N is a generic extension of M by %,
then, in N, the scale condition over M holds. From this fact we get the
following consequence of Theorem 3.4.

THEOREM 3.5. The minimal complete independent products € ®%, ZRP R,
€ Q@R (which are also the minimal w-products) are not weakly w-distributive.

Proof. Any minimal complete independent product is locally indepen-
dent and, therefore, the corresponding extensions M (r,), M(r,) are separated
over M. O

Remark. Theorem 3.5 strengthens the result of Theorem 2.5 in the
sense that the minimal and the quadratic product of algebras #, # are not
only incomparable (and, therefore, non-isomorphic) as products, but that
they are incomparable as algebras, because a homomorphic image of weakly
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w-distributive algebra # cannot be non-weakly w-distributive algebra #R A.
The products 4 ®%, € @£ are not weakly w-distributive also for that reason
that they contain ¥ as a subalgebra. Recently, M. Kutylowski proved that
AQ@A also contains .

R. Solovay proved an (unpublished) result, called “two-Cohen theorem™:
if M is a transitive model class and the continuum (in the sense of M) (“2)M, is
countable, then any real x can be represented as a sum x =ry+r, of two
Cohen numbers rq, ry over M. For random numbers analogous “two-random
theorem” is known. In [4], Boolean versions of these theorems are given in
which the so-called collapse algebra Cola is represented as a complete
Boolean independent product (collapse product) of algebras 4, 4 or #, Z.

As an application of Theorem 3.2 we bring a result concerning the two-
Cohen and the two-random theorem and the collapse products.

THEOREM 3.6. Let M be a transitive model of ZFC, let each of real
numbers ro, r, be Cohen or random over M. If the real x =ry+r; codes over
M a well-ordering of w, then the extensions M (r,), M (r,) are not disjoint over
M.

Proof. By assumption, there is a bijection feM, f: w - w xw such
that f translates x €“2 to a characteristic function ye®*“2 of a well-ordering
-3 of w. Let new be the least element in the sense of 3. Then for any kew
we have n 3k, i.e. y(n, k) =1 and the infinite set a = f~!({n} xw) has the
property described in Theorem 3.2. O

Remark. As a consequence of Theorem 3.6, the collapse products of
algebras %, ¢ or #, # are not locally disjoint. The mixed collapse products
of algebras ¥, # do not exist at all.
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