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Generalizing a Carathéodory’s type theorem [9] and a theorem
of [8] concerning the exact value of Carathéodory’s dimension for the
product of families of d-convex sets we establish the exact value of Carathé-
odory’s dimension for the finite product of convexity structures. Moreover,
generalizing the result of [6] we give the exact value of Helly’s dimension
for the extended product of convexity structures. An analogous question
concerning Radon’s dimension is not answered, a certain inequality is
only known [3]. Also c¢-independence and r-independence have not been
studied yet in products of convexity structures, unlike a characterization
of h-independence obtained in Lemma 11.

1. Definitions and preliminaries. A multiplicative family % of subsets
of a set X such that @ e € is called a convexity structure (cf. [3] and [5]).
Sets from ¢ will be called %-convex. Obviously, the set X is %-convex
as the intersection of the empty family of %-convex sets. If ¥ contains
a set different from X and from O, then ¢ is said to be a non-trivial con-
vexwity structure.

For an arbitrary 4 <« X we define %-hull of A (denoted by ¢-convA)
as the intersection of all ¢-convex sets containing A.

If ¢, c 2%2, 1€ A, are convexity structures, then the family

[[¢: = {[]¢s: Cie €}
Aed AeA

is a convexity structure of subsets of the set [[ X,. We call [] 4, the
product of convexity structures €,, A € A. Aed Aea
Let p; denote the projection from [] X, onto X,, 4 € A. Obviously,

leA

(1) (”%)-convA = ”(%-convpl(A)).

AeAd AeA

)

By Carathéodory’s dimension cim% of ¥ we mean the smallest integer
t > —1 such that, for an arbitrary ¥ <« X and y € ¢-conv Y, there exist.
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t +1 elements (not necessarily different) of ¥ such that y belongs to the
%-hull of these elements. If such an integer ¢ does not exist, then we put
cim% = oo (cf. [2], p. 160).

Helly’s dimension him% of € is the smallest integer ¢{ > —1 for which
any finite family > hasthenon-empty intersection provided theintersection
of any t+1 sets from ¢ is non-empty. If such an integer does not exist,
then we put him% = oo.

Radon’s dimension rim% of € is the smallest integer { > —1 such that
any set ¥ « X containing at least ¢ +2 elements can be divided into two
subsets 8 and P satisfying

SANP =0 and %-convS8n¥%-convP #0.

If such an integer ¢ does not exist, then we put rim¥¢ = oc.

In many papers one can find characteristics larger by 1 than the
above ones and called Carathéodory’s, Helly’s, and Radon’s numbers (see,
e.g., [6]). The advantage of our definitions is that the dimensions of the
family of convex (in the usual sense) sets in an n-dimensional Euclidean
space are equal to n. Obviously, the dimensions are equal to —1 if and
only if X =@.

The following kinds of independence play an analogous role for
the dimensions mentioned above as the linear independence plays for the
usual dimension of Euclidean space.

A set T = X is called: c-independent if

¢-convT # | J¢-conv(T\{a}) or T =9,
acT

h-independent if

ﬂT%’-conv(T\{a}) =0 o T=0,

r-independent if T = PuUS and Pn8S =@ imply
%-convPn¥-convS = 0.

We say that elements of T' are c-independent, h-independent or r-inde-
pendent, respectively. Otherwise, we call them c-dependent, h-dependent
or r-dependent, respectively.

These three kinds of independence have been defined and investigated
for d-convexity and for convexity structures in [7]. Later, on the basis
of [8] (where [7] is quoted as “to appear”) and of the manusecript of [7],
the results have been repeated in [10]. It should be added that [10] con-
tains also new Theorems 7-9 and 13 the meaning of which had to be
supported by Theorem 6. However, Theorem 6 of [10] is not true, as
can be seen by taking the structure ¥ = {¥ < X: card Y < k+1}v {X}
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with card X > k42 and an arbitrary set A < X consisting of k42 ele-
ments. Moreover, the following theorems in the formulation of [10] are
also false: Theorems 1.2 and 2 (for Euclidean spaces with usual convexity),
Theorem 12.1 and left inequalities of Theorems 12.2, 12.3, 13 (for the
product of X, = @ and X, being a Euclidean space with usual convexity),
the right inequality of Theorem 12.2 (for the product of two 3-dimensional
Euclidean spaces with usual convexities).
From generalizations in [7], p. 65, we get the following

LEMMA 1. Carathéodory’s (respectively, Helly’s, Radon’s) dimension
of am arbitrary convexity structure € is equal to the greatest integer t for
which there exists a set of t+1 c-independent (respectively, h-independent,
r-independent) elements; if such an integer t does not exist, then that dimension
28 equal to oo.

Besides Carathéodory’s dimension we can consider a similar number
k(%) which deals with an improvement [1] of Carathéodory’s theorem.

We define k(%) as the smallest integer & > 0 such that for arbitrary
x2o€X, A c X, and a € ¥-conv A there exist & elements (not necessarily
different) =,,...,a2,€ A for which a € %-conv{z,,...,»,}. If such an
integer k¥ does not exist, then we put k(%) = oo.

The relation between cim% and k(%) depends on the condition (%)

C
(2) N\ -conv{wg,...,z}c Uofe-conv{w,,, ey By By By iy eeey B}y
Lseees Ic =
TeX

where ¢ = ¢im% and 0 < ¢ < oo.
The relation is expressed by the following obvious lemma:

LEMMA 2. If a convewity structure € with 0 < cim® < oo satisfies
condition (2), then k(€) = cim¥. Otherwise, k(¥) = 1+ cim¥. Moreover,
k(%) = oo if and only if cim% = oo.

The family of all convex sets in a Euclidean space satisfies condition (2)

(see [1]). However, for many convexity structures the condition does
not hold (see, e.g., Lemma 10).

2. Carathéodory’s dimension for products of convexity structures.

THEOREM 1. If exactly m among n > 2 non-trivial convexity structures
%;c 2% (1 =1,...,n) do not satisfy condition (2), then

cimﬁ € =m—1+ Zn'cim‘g,-.

i=1 1=1

() The set {zy, ..., Tj_1, T, Tj41, ---» T} in condition (2) is to be understood as
{z, 2y, ..., x;} forj = 0 and as {=,, ..., Z,—1, v} for j = ¢. The same remarks relate to
other parts of this paper.
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It is convenient to prove Thecrem 1 with the help of some lem-
mas. Let

n n
X* = n X, € = n‘g,-, ¢; =cim¥;, i=1,...,m), ¢ =cim@".
i=1 i

If at least one of the dimensions ¢; (¢ =1,...,n) equals oo, then
Theorem 1 is obvious. Let 0 < ¢; < oofor¢ =1,..., n. In Lemmas 3-9 we
consider the case n = 2.

LEMMA 3. ¢* < ¢, +¢+1.

Proof. Let S < X* and s e ¢*-conv8. By (1) and the definition
of Carathéodory’s dimension, there exist elements o, ..., %, s Yo5 -+ Yo, € 8
such that

P1(8) € €1-conv {p, (%), ..., P1(%))}, DP2(8) € €s-conv {P,y(Yo), .-, Pa(Ye,)}-

From (1) we infer that s € ¢*-conv{%, ..., %, ,Yo; ... Y,,}. Hence
any element s € ¢*-conv 8 belongs to the ¢*-hull of not more than ¢, + ¢, +2
elements of §. Therefore, the inequality c¢* < ¢, +¢,+1 is satisfied.

LEMMA 4. If (2) holds for at least one of the structures €, and €,, then
< ept¢,.

Proof. We use the notation of Lemma 3. It is sufficient to show
that s belongs to the #*-hull of not more than ¢, +¢,+1 elements of S.
Let ¢, satisfy (2). Since p,(s) € %;-conv {p;(@,), ..., P1(2.,)}, We have

P1(8) € €;,-conv {p,(x,), ..., P1(2-1)y P1(¥0)y P1(Zj11)s ""P1(mc1)}
for scme je€{0,...,c,}. Hence
8§ € €*-conV{Toy .oy Ti_1y Tjgrs oes Teys Yoy oeos Yoo} o

LEMMA 5. If both structures €, and €, are mon-trivial and satisfy
condition (2), then ¢* < ¢, + ¢, —1.

Proof. We use the notation of Lemma 3. Since %, is non-trivial
and fulfils (2), ¢, > 1. Similarly, ¢, > 1. It is sufficient to show that s
belongs to the ¢*-hull of not more than ¢, + ¢, elements of S.

Case 1. Not all elements z,, ..., ., are different or not all elements

Yoy --+y Yo, are different.
Let, for instance, not all elements y,, ...,y be different. We can
assume ¥, = ¥,. Since (2) is satisfied for €,, for some ¢ € {0, ..., ¢,} we have

21(8) € €1-conv {p,(%o)y «+ vy P1(Zi—1)s P1(¥1)s P1(@it1)y o) pl(wcl)}°
Therefore,
§ € €7-CONV oy -.ny Bi_1s Byprsenes Bos Y15 -+ Yo}

i.e., s belongs to the ¢*-hull of not more than ¢, +¢, elements of 8.



CARATHEODORY'S AND HELLY’S DIMENSIONS 219

Case 2. All elements z,,...,%, are different and all elements
Yoy -+ Y, are different, and ¢, >2 (or ¢; > 2).

Since ¥, and ¥, satisfy (2) and ¢, > 2, there exist numbers j’, j",
and j (j #3',J #J"') in the set {0,...,¢;} and a number 7 in the set
{0, ..., ¢y} such that

(a) p1(s) € €,-conv {p,(x,), ..., P1(@5_1)y P1(Yo)s pl(mj’+l)’ °°"p1(wcl)}7
(b) p1(8) € €;-conv {p,(x,), ..., P1(Zpr 1)y P1(Y1)y Do (@ 1) "‘7P1(-'”c1)}’

() Pa(8) € Bo-conv {Do(Yo)y - -y Pa(Yi—1)y P2(®))y Pa(Yis1)y ooy Pa(Ye,)}-
If + # 0, then from the conditions (1), ;; # z;, (a), and (¢) we get

*
8 € G -CONV gy «.vy Bjr_yy Tjryyy +eey Zeys Yoy «oor Yicry Yiqrs ooey ?Icz}-

If ¢ = 0, then from the conditions (1), ;.. # x;, (b), and (c) it follows
that

]
8 € CT-CONV{Tgy «ovy Bjrr_y 3 Bjrrgy g eeny Beyy Y1y -oey Yoo} -

03893. 01 - 02 - 1-
By Lemma 4 we have ¢* < 2. Hence s belongs to the ¢*-hull of some
three elements u, w, v of 8. From (1) it follows that

P1(8) € €y-conv{p,(u), p,(w), p,(v)}.
Since ¢, = 1, p,(s) belongs to at least one of the following sets:
€¢,-conv {p,(u), p,(w)}, &,-conv{p,(u), p,(v)}, E,-conv{p,(w), p,(v)}.

Actually, p,(s) belongs to at least two of these sets because ¥, satis-
fies (2). Similarly, it can be shown that p,(s) belongs to at least two of
the following three sets:

€.-conv {py(u), pa(w)}, Fo-conv{p,(u), pPs(v)},
€-conv {p,(w), Ps(v)}.

Therefore, we can choose two among the elements «, w, v (suppose %
and w) for which

P1(8) € €y-conv {p,(u), P;(w)} and  P,(8) € B -conv{P,(u), Ps(w)}.

From (1) it follows that s € ¢*-conv {u, w}.
LEMMA 6. ¢* > ¢; ¢, —1.
Proof. From Lemma 1 it follows that for any convexity structure

% < 2X with ¢ = c¢im% there exist different elements d,,...,d, € X and
an element d¢' € X for which we have

(3) d' € €-conv{d,, ..., d,},
(4) d' ¢ €-convi{dy, ..., @i 1,0 1y..0yd}, T=0,...,¢.
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Assume that a,, ..., e, s a’ and b,,..., beys b’ are such elements in
the cases of ¢, and ¥,, respectively. The set

T = {(ag, b1), ..., (ambcz); (@15 bo)y «-+y (ac17bo)}

consists of ¢, 4+ ¢, different elements of the set X* = X, x X,. From (3)
and (1) we get (a’,d’) e €*-convT. Let P S T. We shall show that
(@', ") ¢ €*-convP. Let (a,, b;) ¢ P, where i € {1, ..., ¢,}. From (4) we get

b' ¢ €y-conv{byy ...y b1y by1y.eny by} D €a-convp,(P).

By (1) we get (a’, b’) ¢ €*-convP. If (a;, b,) ¢ P, then the consideration
is analogous. Hence the set T is c-independent. Sinee T' consists of ¢, +c¢,
elements, by Lemma 1 we have ¢* > ¢, + ¢, —1.

LeMMA 7. If both structures €, and €, do mot satisfy condition (2),
then c¢* > ¢, +c¢y+1.

Proof. If for the structure ¢ with ¢ = c¢im¥% condition (2) is not
satisfied, then there exist different elements d,,...,d,,d € X and an
element d’ € X for which condition (3) and the following condition hold:

(5) d' ¢ ¢-conv{d,,...,d;_,, d, &;,,,...,d}, i=0,...,¢.

Assume that a,, ..., @, , a, a’ and by, ..., b,,, b, b’ are such elements in
the cases of ¢, and ¥,, respectively. Therefore the set

T = {(a,bo), ...y (@, be,), (@9, ), ..., (@, b)}

congists of ¢, + ¢, +2 different elements. Similarly as in Lemma 6, we can
show that the element (a’, b’) belongs to the set ¥*-convT and does not
belong to the ¥*-hull of any ¢, +c¢,+1 elements of 7. Hence T is c¢-inde-
pendent. Since T consists of ¢, + ¢, +2 different elements, by Lemma 1
we get ¢* > ¢, +¢,+1.

LEMMA 8. If at least one of the structures €, and €, does not satisfy
condition (2), them c* = ¢,+c,.

Proof. Assume that ¢, does not satisfy condition (2). For the same
reasons as in Lemma 7, there exist different elements a,, ..., a,, a € X,
and an element a’ € X, for which (3) and (5) hold. Analogously as in Lem-
ma 6, there exist different elements by, ..., b,, € X, and an element b’ € X,
for which (3) and (4) are satisfied. Hence the set

T = {(a,b,), ..., (a, b,), (@0, bo), ..., (@, bo)}

consists of ¢, + ¢, +1 different elements. Similarly as in the proof of Lem-
ma 7, it is easy to show that (a’, b’) belongs to the set ¥*-convT and does
not belong to the %*-hull of any ¢, +c¢, elements of T. Therefore, T is
c-independent and, consequently, the inequality c* = ¢, +¢, is satisfied.
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As an immediate consequence of Lemmas 3-8 we get
LEMMA 9. For non-trivial structures €, and €, we have

e;+e,—1  if (2) holds for both structures,
c¢* =1{c,+¢y if (2) holds exactly for one structure,
ce;+ce+1  if (2) does not hold for either structure.

LeMMA 10. Condition (2) does mot hold for the product of any n =2
non-trivial convexity structures.

Proof. Obviously, it is sufficient to prove Lemma 10 for n = 2.
To show that (2) is not satisfied for the structure ¢* = %, X ¥, it suffices
to find elements d,,...,d,, d,d € X, x X, for which (3) and (5) hold.
We consider three cases as in Lemma 9. In the first case we put
{doy ..oy d}=T,d = (ay,by),d" = (a’,b’) as in Lemma 6 (notice thate,>1,
¢, >>1). Inthesecond caselet {d,,..., d;} = T,d = (a, by),d’ = (a’, b’) a8 in
Lemma 8 (notice that ¢, >1). In the last caselet {d,, ...,d,} =T, d = (a,b),
d’ = (a’,b’)asin Lemma 7. It is easy to see that (3) and (5) hold in every case.
Therefore, condition (2) does not hold for the product ¢*.

Proof of Theorem 1 is carried out recurrently. For n = 2 the
theorem holds by Lemma 9. Suppose that the theorem is true for the
product of r > 2 convexity structures. Consider the product of » +1 struc-
tures ¢; (+ =1, ...,r+1). Assume that exactly m among these structures
do not satisfy condition (2).

Case 1. The structure ¥,., satisfies condition (2).

Then there are exactly m among the structures ¢, (1 =1,...,7)
for which (2) does not hold. Since the theorem is true for n = 2 (see Lem-
ma 9) and by Lemma 10, we have

ri-1 r r
cim !_] %, = cim [( Il fﬁ,-)_x f€,+1] =cim [ | ¢+,
=] =l i=1
r+1

= (m—1+ Zr:ci)-{—c,+1 = m—l—l—z;I ;.
i=1 i=1

Case 2. The structure ¥,,, does not satisfy condition (2).
Then there are exactly m —1 among the structures ¢; (¢t =1,...,7)
for which (2) does not hold. Consequently,

cimFIl %; = cim [([r] ‘6,-) x%,._l_,] = cimﬁ €+, +1
=1 i=l i=1

r+1

=(m—2+2r0,-)+0,+1+1 = m_1+20t"
=1

i1=1

Thus the proof of Theorem 1 is complete.
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THEOREM 2, Let X; #@ and let €, c 2%i be a convewily structure,
i =1,...,n. Then for the product €* of the above structures we have

n

(6) k(€)= D' k(%)

i=1
Proof. For n =1 the thecrem is obvious.
Let n = 2. For 4 = 1,2 let 6, = 0 if (2) holds for ¢; and let 6, =1
otherwise. If ¥, and %, are non-trivial structures, then by Lemmas 2, 9,
and 10 we get

k(%)) +k(%,) = 6,+cim%, + 8, +cim¥, = cimé* +1 = k(%").
Obviously, if at least one of the structures is not non-trivial, then also

k(%,) +k(%,) = k(€"). Therefore, the theorem holds for n = 2.
Now, recurrently, we get equality (6).

3. Helly’s dimension of the product. Let

x* =]7X,1 and ‘6"‘:”%.

ZeA Aed
LEMMA 11. Elements a, € X*, w € Q, are h-independent if and only
if there exists A € A for which the elements p,(a,) € X,, w € 2, are h-inde-
pendént. .
Proof. From (1) we get
() € -conv{a,: we 2, w# w'}=) n %,-conv{p,(a,): w € 2, v # o'}

w’eR w'eN AeAd

= ” M €;-conv{p,(a,): we 2, w # w'}.
leA w'eR
Thus, Lemma 11 follows from this equaiity, from the definition of
h-independence, and from the equivalence

HA‘ =0 «»(A,1 =@ for some A€ A).
Zed
Lemma 11 implies immediately
LEMMA 12. Elements a, € X*, w € Q, are h-dependent if and only
if the elements p,(a,) € X;, w € 2, are h-dependent for any A € A.
THEOREM 3. For the product €* of convewity structures €, < 2°*
such that X, # @ for i€ A, we have

. him%* = sup himé,.
AeAa

Proof. Let »* = him%* and h; = him%,, A€ A.
If h* = oo, then by Lemma 1 for any natural number n there exists
a set T < X* of at least n+1 h-independent elements. From Lemmas 1

and 11 we get suph; = oc.
Aed
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Let h* < co. By Lemma 1 there exists a set of A*+41 h-independent
elements aq, ..., a,. € X*. For some A’ € A the elements p; (a,), - .., P (@)
of X, are h-independent, which is gnaranteed by Lemma 11. From Lemma 1
we get

h* < hy < suph,.
Aea

On the other hand, from Lemma 1 it follows that any A* 42 elements

of X* are h-dependent. By Lemma 12, any A* 42 elements of X, are h-de-

pendent for any 4 € A. Hence h, < hg for all 1 € 4, i.e. suph, < k*. Therefore
Aed

h* = suph,.
Aed

4. The case of d-convexity. Let X be a metric space with metric d.

A set D c X is called d-convex if for any ae D, b e X, ¢ € D such
that d(a, b)+d(b,c) = d(a, ¢) it follows that b € D (see [4]).

Obviously, the family 2 of d-convex sets of the space X is a convexity
structure.

It is known that

dz‘((a'u ceey @)y (byy ..oy bn)) = Zdi(au b;)

=1

n
is a metric in the product X* = [] X, of metric spaces X; with met-
. i=l .

ries d; (i =1,...,n). Moreover, if 9; is the family of d;-convex sets

(¢ =1,...,n), then
g* =”9i

t=1

is the family of ds-convex sets [6]. Consequently, (1), Theorem 1 with the
lemmas, Theorem 2, and also finite variants of Lemmas 11 and 12 and of
Theorem 3 hold for the family 2* of dz-convex sets.

In considerations of a known theorem of Steinitz (see, e.g., [2], p. 116)
we define Steinitz’s number and we give its value for 2*.

By Steinitz’s number 8(2) of the family 9 of d-convex sets of a metric
space X we mean the smallest integer ¢ such that, for any Y < X
and vy eintd-convY, there exist ¢ points ¥;,...,y¥,€Y such that
y €intd-conv {y,, ..., ¥,}. If such an integer ¢ does mnot exist, then we
put 8(2) = oo. )

For the family 2 with s = 8(2) < oo we consider the condition
(7)

8
A intd-conv{z,,...,,} jU intd-conv{wy, ..., T;_1, &, T 1y ..., B}
=1

LS EIXrL 7Y
xeX
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THEOREM 4. If exactly q among the families 2; of d,convexr sets
(¢ =1, ...,n) satisfy condition (7), then

(2% = —g+ D's(2)).

Proof. In the proof of Theorem 1 we use only (1) and the following
isotonic property of the operation %-conv:

A c B = ¢-convA < ¥-convB.

Lemma 1 used in the proofs cf Lemmas 6 -8 can be also generalized for
isotonic operations [7]. Obviously, the operation intd-conv is also isotonic.
Moreover, for the operation intd-conv an analogue of (1) is also true:

n n
intd;-conv4 = int [ [ d;-convp,(4) = [ ] intd;-convp,(4).
i=1

i=1

Consequently, for the number z(2) = $(2)—1 we can repeat the
proof of Theorem 1 without essential changes. This follows from the

comparison of the definitions of Carathéodory’s dimension and Steinitz’s
number. We obtain

n
2(2%) =m—1+ ) 2(2),
i=1
where m denotes the number of families 2, for which (7) does not hold. Thus

8(2*) = 1+2(2%) = 1+m—1+2z(.oz,.) =m+ Y [8(2)—1]

i=1 i=1

=m—n+ js(@i)= —q—+ Zn:s(@,.).

=1 1=1

Example. From Theorems 1-4 it follows that for the family 2,
of dz-convex sets of the space R™, where

n
dz((@) ...y @4), (by, ...y b)) = D Ib;—ayl,
i=1
we have

¢imPy; =n—1 (n>=2), himP;=1, k(9g) =n, 8(D;) =2n.
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