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1. Introduction and terminology. The main concern of this note is the
homotopy groups of open n-manifolds obtained by removing wild arcs from
the n-sphere S". In order to fully motivate our results, we discuss these
matters and related historical details as follows.

The classic work of Fox and Artin [8] initiates the study of wildly
embedded arcs in S? (an arc is a space which is homeomorphic to the closed
interval [0, 1]). They exhibit an arc 4 in S (see Example (1.1) of [8]) which
is demonstrated to be wild by showing that =, (S3—A) is non-trivial, i.e.,
n,(S3— A) detects the wildness of A. Subsequently, there are numerous
examples of wild arcs in S” n > 2, whose wildness is detected by (the non-
vanishing of) the fundamental groups of their complements (see, e.g., [1], [2],
[6]). Similar results are also known when S”" is replaced by the Hilbert cube
Q (see [4], [6], [15)).

Throughout this section let « be an arc in ", n > 2. It is a general fact
that the reduced integral homology groups of S"—a vanish (use the Alexan-
der Duality [14]), i.e,, S"—a is an acyclic n-manifold. It is reasonable to ask
whether S"—q is also aspherical for all n > 2 (i.e., m;(S"—a) vanishes for all
i > 1) since this is at least the case for S*—a (use the Sphere Theorem). For
any n > 3, there is no known example of an arc a in S" such that =;(S"—a)
is non-trivial for. some or, more significantly, for all i > 1; the same applies
to arcs in Q. If such an arc a exists in S" or Q, it must geometrically link
suitable (singular) spheres (in S" or Q).

The purpose of this note is to present a method of constructing (wild)
arcs in S" with n >4 whose complements have infinitely many non-trivial
homotopy groups, and thus fail to be aspherical in a drastic manner. As an
application of this method, we produce, for each n > 4, an infinite family of
arcs o’s in S" such that every homotopy group of S$"—a is non-vanishing for
each arc a. Furthermore, the algebraic structure of these groups is explicitly
determined. An added advantage of our method is that we have analogous
results when S” is replaced by the Hilbert cube Q. Precise statements can be
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found in Theorems (3.4) and (4.3) (see also (4.1.1)). In this way, we construct
for each n > 4 an infinite family of smooth, acyclic, and open n-manifolds (as
arc complements in S") whose every homotopy group is non-trivial. Since the
complement of an arc in Q is a Q-manifold, many interesting examples of Q-
manifolds also result. We do not pursue applications of these results to the
theory of generalized n-manifolds, cell-like decompositions of S" or Q,
topological embeddings of spheres in S" or Q, etc. (see [6] for related
discussions).

This note is a continuation of our earlier work [6] with R. J. Daverman;
we wish to thank him for his help and encouragement.

2. Homiology spheres and arcs in S" or Q. We refer to [3] and [5] for
matters concerning homology spheres and crumpled cubes, respectively. The
following is intended as a brief review of some results proved in [6].

(2.1) ProposiTION. For each homology n-sphere H" with ny H" # {1} (of
course, n > 2) and each integer k > 1, there exist a crumpled m-cube C (m =
n+k) contained in S™ and an arc a tamely embedded in the boundary 0C of
C such that:

(@) the closure S™—C is an m-cell B;

(b) OC is locally flat modulo «o;

() ny(S"—a) x y H";

(d) S"—a, C—a, and H"— {x} are homotopy equivalent.

This proposition appears in [6], however, (d) is not explicitly stated
there; it is clear from the context (see [6]). The following is a consequence of
the technique of “infinite inflations” given in [4].

(2.2) ProposiTiION. For each crumpled n-cube C such that the identity
sewing (the space obtained by identifying C with itself by the identity along 0C)
is homeomorphic to S", there exists an embedding e: C —Q into the Hilbert
cube Q such that C— A has the homotopy type of Q— A, A = e(A), where A is
any (compact) subset of OC.

Since the crumpled m-cube C (m = n+k) satisfying the conclusions of
Proposition (2.1) is a suspension (cf. [6]), it follows from Theorems (8B.6)
and (8B.7) of [5] that the identity sewing of C is homeomorphic to S™. Thus,
the hypotheses of Proposition (2.2) are satisfied. Let e: C = Q denote the
embedding given by Proposition (2.2). In this setting we have the following

(2.3) ProrosITION. The spaces Q—a, S™—a, C—a, and H"—{x} are
homotopy equivalent, where o« =e(x) (H", C, S™, a, and m=n+k as in
Proposition (2.1)).

3. The method and the first example.

(3.1) The method. Our method is based on the following key result of
Section 2:
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For each homology n-sphere with n, H" # {1} and each integer k > 1,
the arc a constructed in $™ (m = n+k) and the corresponding arc « construc-
ted in Q by applying Propositions (2.1) and (2.3) have the property that S™
—a, Q—a, and H"— {x} are homotopy equivalent. Therefore, the computa-
tion of =m;(S"—~a) or m;(Q—a), i >0, is reduced to the computation of
m;(H"— \x}); this can be often done for some carefully chosen H". Here, the
basic idea is that if one has a good understanding of the universal cover A"
of H", then one is bound to succeed in computing =;(H"— |x!) for some (all)
i>1 (assuming n, H" > n,(H"— x]) is already known). The following
examples demonstrate this technique.

(3.2) The first example. Let H denote the Poincaré homology 3-sphere
[13]. It is well known that n, H has order 120 and a presentation

x, y: x> =y =(yx)?);

this group is known as the binary icosahedral group. The universal cover H
of H is S For each m > 4, we apply Propositions (2.1) and (2.3) to obtain
an arc a in S™ and the corresponding arc & in Q satisfying the following:

(3.2.1) n(S"~a) x my (Q—a) > 7, (H—\x}) xn, H;

(3.2.2) m;(S*—a) > n;(Q—a) > m;(H—{x}) for i > 1;

(3.2.3) m;(H—'x]) = m;(S*—p~'(x)) for i > 1, where p: H —» H denotes
- the covering projection.

In this_setting, observe that p~'(x) is a set consisting of 120 points.
Therefore, H—p~!(x) is up to homotopy a wedge B of 119 copies of the 2-
sphere. Observe that:

(3.24) ;B xn;(H— x!) for i > 1;
(3.25) m;;B x n;(S"—a) x n;(Q—a) for i > 1.

The group #; B (i > 1) can be-expressed as a direct sum of the homotopy
groups of spheres of suitable dimensions. This is a well-known result of
Hilton [9].

(3.3) The firsr example: computations. The following is intended as a
brief introduction to “the method of Hilton” (see Corollary (4.10) of [9]);
consequently, we compute a few groups m; B as a sample.

(3.3.1) The Mobius function u is defined as follows: u(1) =1, u(n) =0
unless n is square free, and u(n) = (—1)* when n is the product of k distinct
primes (of course, n is a positive integer).

(3.3.2) For each integer k > 0, a basic product function f is defined by the
rule

fwW) ==23 n@dk"".

1
w diw
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(3.3.3) Suppose T is a wedge of k two-spheres. A formula of Hilton [9]
can now be stated as follows:

Tx(®nS)d(DnS)D...o( @ =),

s 12 JG-1

where @ m, S? means the direct sum of f (1) copies of ;S and similarly for
1)
others.

(3.34) A table for values of f with k = 119:

TRy

f(w)l 119 | 7021 | 561680 I 50129940 I .

(3.3.5) Each of the groups m,S2 nsS? n,S3 n5S3 or nsS* is isomor-
phic to the cyclic group Z, of order 2.

By careful combining the discussions given above, we have proved the
following

(3.4) THEOREM. For each m > 4, there exist an arc o in S™ and an arc d
in Q such that

nl(S"'—a) X nl (Q—&) X 7[1 H
n,(S"—a)xn,(Q—a)xmB fori>1.

For instance, we have the following specific calculations:
(@ n,(S"—a) xn,(Q—a)xn,Bx @ Z;

119

(b) n3(S™—a) x 13(Q—a) x 3B = (-B Z;
©) (S —a) xmy(Q—a) B = ( @ Z,)®( @® Z);

561680
(d) ns(S"—o) > ns(Q—a)~nsB~( @ Z,)o( @ 2)
68810 50129940

Here, Z denotes the infinite cyclic group (recall B is a wedge of 119 copies
of S2, H is the Poincaré homology 3-sphere, and Z, is the cyclic group of
order 2).

4. Additional examples.

(4.1) Arcs in S™ or Q by aspherical homology spheres. Suppose H = H" is
an aspherical homology n-sphere with n, H # {1]. Since H is a K(n, 1), its
universal cover H is contractible. Consider H — ix! and H- —p~1(x), where
p: H —» H denotes the covering projection. Note that p~!(x) is a discrete
subset of H having the cardinality of =, H (which is countable infinite). Let
Xy, X3, ... be an enumeration of points in p~ ' (x) without repetitions. Choose
a closed n-cell C in H containing x in its interior such that p~!(C) is a
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disjoint union of n-cells C,, C,, ... with x; in IntC; for i > 1. Let 4, denote
a polyhedral arc which meets p 1(C) in its end-points and joins a point in
0C, to a point in 0C,. Suppose the arcs A4,,..., A,_,; have been defined.
Define a polyhedral arc A, which meets p~!(C) in its end-points and joins a
point in dC, to a point in 0C,,, such that A4, lies in the complement of an
open set containing the union of arcs A,, ..., A,_,. Let N denote the union
of C,, A,, C,, A,,... Clearly, N is a strong deformation retract of H
(observe that the inclusion N »H is a homotopy equivalence). Thus,
N—-p~'(x) is a strong deformation retract of H—p~'(x). For each i > 1,
deform C;—{x;! into 0C;. This means that N—p~!(x) has the homotopy
type of an infinite wedge W of (n— 1)-spheres S,, S,, ...; consider W as the
direct limit of the system

S: Sl —’SZ Vv Sz _’(Sl Vv Sz) Vv S3 i

whose bonds are the obvious inclusions. For each i > 1, we compute n; W as
the direct limit Limm; S. The computatlons of len S (i>1) can be

-

completed by using the results of Hilton [9] and the fact that each bond in
the direct system m; S embeds its domain in its range as a direct summand
(see [9]). Observe that

n,Wxn,W=x...xn,_,W=x{l}

and
n, Wx®Z

(this denotes the direct sum of countable infinite copies of Z), since each S;
(i>0) is an (n—1)-sphere. An enterprising reader may compute =, W,
Tar1 W, ...

The following theorem summarizes our discussions given above:

(4.1.1) THEOREM. For each aspherical homology n-sphere H" with
n, H* # |1} and an integer k > 1, there exist an arc a in S™ (m = n+k) and
the corresponding arc & in Q such that:

@ n,(S"—o) x 7, (Q—a) = my HY;

b) 1 (S"—a) xm;(Q—a) = |1! when 1 <i <n—1;

© mES™—a)xm(Q—ad)x DZ when i =n—1;

d) m(S™—a) xm(Q—a) xn; W when i > n—1.
(Recall: W denotes the wedge of (n—1)-spheres S,, S,,...)

We now provide examples of homology spheres which are K (=, 1)
spaces.

(4.2) Brieskorn homology 3-spheres. Suppose p, q, and r are integers
greater than 1. Let C? denote the 3-fold product of the complex plane C.
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A Brieskorn manifold M = M (p, q, r) is the set of all points (z,, z,, z5) of C3
satisfying

22+24+25=0 and |z;)2+|zx)2 +|z5)2 = 1.
The following is a well-known result of Brieskorn (cf. [10]):

(4.2.1) If p, q, and r are pairwise relatively prime, then M is a homology 3-
sphere called a Brieskorn homology 3-sphere.

The following results are also well known:

(4.2.2) M(2, 3, 5) is homeomorphic to the Poincaré homology 3-sphere;
this is the only Brieskorn homology 3-sphere with finite fundamental group.

(4.2.3) A Brieskorn homology 3-sphere with infinite fundamental group is a
K (m, 1).

(4.2.4) Two Brieskorn homology 3-spheres with infinite fundamental groups
are homeomorphic if and only if their fundamental groups are isomorphic.

A presentation of the fundamental group of a Brieskorn (homology 3-
sphere) manifold is given in [11].

Our main reference for these results is [11]; see also [10] and [12]
where additional references may also be found.

(4.3) THEOREM. For each Brieskorn homology 3-sphere H with infinite
ny H and integer k > 1, there exist arcs a in S™ (m = 3+k) and o in Q such
that

n, (S"—a) xn,(Q—a) =7, H,
n(S"—a)xm(Q—a)xa, W for all i > 1.

For instance, we have the following specific calculations:
@ m,(S"—0) x M (Q-d) x T, W DZ;

(b) n3(S"—a) x n3(Q—a) xn; W= DZ;
© m(S"—a) xmy(Q—a) >, W %(6')22)@(@2):
d) ns(S"—a) xns(Q—a) xas W x (G')Zz)@(@Z)

The space W is a wedge of countable mﬁmte coples of the 2-sphere; this
is discussed in (4.1).

Proof. Compute x; T (i > 1) for a wedge T of n two-spheres; use (3.3.3).
Our proof is completed by observing that as n goes to infinity (i.e., if we take
the direct’ limit), the values of f(w) as in (3.3.4) also go to infinity.

(44) Remarks. Theorems (3.4) and (4.3) exhaust all the Brieskorn
homology 3-spheres. Recall that the Poincaré homology 3-sphere is the
Brieskorn manifold M (2, 3, 5); this is used in Theorem (3.4). The remaining
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Brieskorn homology 3-spheres have infinite fundamental groups; these are
used in Theorem (4.3). It is easy to see that there are countable infinite
topologically distinct Brieskorn homology 3-spheres (see [10]-[12]). Observe
that if one suitably varies m or a in Theorem (4.3), the groups =;(S™—a) or
7;(Q—a) do not change up to isomorphism for i > 1.

(4.5) Additional results. Here is another method of producing homology
3-spheres which are K (=, 1) spaces. Let M; and M, denote complements of
non-trivial smooth knots in S3. Construct a 3-manifold M from M, and M,
by identifying their boundaries by a diffcomorphism which takes the longi-
tude of one to the meridian of the other (see [13], p. 251). The following facts
are easy to prove:

(d) M is a homology 3-sphere;

(b) Mis a K(n, 1);

() my M is an amalgamated free product of ny M, and n, M, along Z®Z.

Clearly, if a or a are arcs constructed in S™ with m > 4 or Q, respéctive-
ly, by utilizing M, then

T, (S"—a)xn, (Q—) =t M
and
n,(S"—a)xm(Q-a) =, W fori>1

(W is the wedge of countable infinite 2-spheres as above).

(4.6) Remark. For each m > 2, there exist arcs a« in S™ and the
corresponding arcs & in Q such that S"—a and Q—a are K (n, 1) spaces with

T ($"—o) xm (Q—a) # {1}

This follows easily by suitably applying a “suspension method” to a suitable
arc in S3; see [2] and [6] for details.

REFERENCES

[1] W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. 53 (1951),
pp- 276-297.

[2] M. Brown, Wild cells and spheres in higher dimensions, Michigan Math. J. 14 (1967), pp.
219-224.

[3] J. W. Cannon, The recognition problem: What is a topological n-manifold?, Bull. Amer.
Math. Soc. 84 (1978), pp. 832-866.

[4] R. J. Daverman, Infinite inflations of crumpled cubes, Topology Appl. 12 (1981), pp. 35-
43,

[5] — Embeddings of (n— 1)-spheres in Euclidean n-space, Bull. Amer. Math. Soc. 84 (1978), pp.
377-405.

[6] — and S. Singh, Arcs in the Hilbert cube (S™ whose complements have different fundamen-
tal groups, Compositio Math. 48 (1983), pp. 209-222.

7 ~ Colloquium Mathematicum 56.2



298 S. SINGH

[7] R. D. Edwards, The topology of manifolds and cell-like maps, pp. 111-128 in: Proceedings
of the International Congress of Mathematics (Helsinki), 1978.

[8] R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of
Math. 49 (1948), pp. 979-990.

[9] P. J. Hilton, On the Komotopy groups of the union of spheres, J. London Math. Soc. 30
(1955), pp. 154-172.

[10] J. W. Milnor, On 3-dimensional Brieskorn manifolds M(p, q, r), pp. 175-225 in: Knots,
Groups, 3-Manifolds, Ann. of Math. Studies 84, Princeton, New Jersey, 1975.

[11] P. Orlik, Weighted homogeneous polynomials and fundamental groups, Topology 9 (1970),
pp. 267-273.

[12] — Seifert Manifolds, Lecture Notes in Math. 291, Springer, New York 1972.

[13] D. Rolfsen, Knots and Links, Publish or Perish, Boston 1976.

[14] E. H. Spanier, Algebraic Topology, McGraw-Hill, Inc, N. Y., 1966.

[15] R. Y. T. Wong, A wild Cantor set in the Hilbert cube, Pacific J. Math. 24 (1968), pp.
189-193.

DEPT. OF MATH.
SOUTHWEST TEXAS STATE UNIVERSITY
SAN MARCOS, TEXAS 78666

Regu par la Rédaction le 15.3.1985



