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In 1963 in [4] MardesSi¢ and Papi¢ raised the question “Is every locally
connected continuum M which is the continuous image of an ordered
compactum K also the continuous image of an arc (nondegenerate ordered
continuum)?” The main purpose of this paper is to show that if (1) P denotes
the set of all points x of M (as above) such that every neighborhood of x
contains a non-metrizable subcontinuum of M, and (2) G denotes the
decomposition of M into components of P and points of M —P, then
(3) M/G is the continuous image of an arc.

There are a number of other partial results connected with the question
above. Mardesi¢ shows in [3] and Cornette and Lehman show in [2] that
there is a nondegenerate locally connected continuum which is not pathwise
connected by continuous images of arcs. In [5] Mardesi¢ shows that if X is
the continuous image of an ordered compactum K and G is an open F,-set
in X such that G is connected, then Bd(G) is metrizable. In [7] Pearson
shows that if H is a continuum in which each pair of points is separated by a
finite set, then H is the continuous image of an arc. L. E. Ward Jr. shows in
[13] that if a continuum X can be approximated by finite trees, then X is the
continuous image of an arc. In [8] Simone shows that if K is a
paraseparable continuum containing no nondegenerate metric subcontinuum,
then K is netlike if and only if K is the continuous image of some ordered
compactum. Treybig shows in [11] that if the continuum M is the
continuous image of an ordered compactum and x, y are points of M
contained in no metric subcontinuum of M, then x, y are separated in M by
a finite set. In [15] Young shows that if Lis the “long arc” then L x[0, 1] is
not the continuous image of an ordered compactum.

In this paper all topological spaces are Hausdorff, and all ordered
topological spaces are provided with the interval topology. A compactum is a
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compact Hausdorff space, and an arc is a nondegenerate ordered continuum.
Local connectivity and upper semi-continuous collections are defined in [14].
A continuum is a connected compactum, and a continuum X is a tree if each
pair of points of X is separated in X by a point of X. A continuum X is
locally peripherally finite if each point of X has arbitrarily small
neighborhoods with finite boundaries.

Throughout this paper let f: K -+ M be a continuous mapping of the
ordered compactum K onto the locally connected continuum M. By Lemma
4 of [9] we may assume without loss of generality that (1) f maps no closed
proper subset of K onto M and (2) if x and y are points of K such that f(x)
= f(y), then there is a point z of K between x, y such f(z) # f(x). Let A, B’
denote, respectively, the first and last points of K. Given subintervals I, J of
K such that f(I) intersects f(J), let x;;, x;; (x =a, b, ¢, d) denote points of I,
J respectively, such that (1) f(x;;) =f(x},) for x=a, b, ¢, d, and (2) if tel,
teJ and f(t) =f(t'), then a;; <t < b;; and ¢j; <t' < dj;. We let P, G be as
in paragraph one.

At this stage it might help to see what the set P looks like in some
examples. Let I, I,, ... denote a simple sequence of copies of [0, 1], and let
L, denote I, xI; x ... with the topology induced by the lexicographic order
(see [1]). Let L, denote the “long interval”. In the plane let M’ denote the
union of the intervals [(0, y), (1, )], y=0, 1, 4, 1, ..., and the intervals
[(g/27, 0), (g/27,1/2P)], p=0, 1, 2, ..., and q an integer in [0, 27].

Example i (i=1, 2). Form M' from M’ by replacing each maximal
vertical interval whose interior is open in M’ by a copy of L;. The topology
is determined in such a way that there is a natural monotone map from M’
onto M'. If M = M? the set P has a dense set of degenerate components, and
if M =M! the set P is a continuum. It may be seen with the aid of the
Hahn-Mazurkiewicz Theorem applied to M’ that each M’ is the continuous
image of an arc.

THEOREM 1. G is an upper semi-continuous decomposition of M into
continua such that M/G is a locally connected continuum which is the
continuous image of an ordered compactum.

Proof The last part of the theorem follows by considering
Kim2 M/G, where ¢ is the natural map. The first part of the proof
follows from well-known properties of upper semi-continuous collections (see
[14]).

THEOREM 2. Suppose the subcontinuum L of M fails to be locally connected
at the point P of L and U is an open set containing P. Then there exist (1) open
sets Ry, R,, Ry such that PeR, c R, c R, = R, c Ry Ry U, (2) com-
ponents Ly, L,,... of LN R;, and (3) sequences of points u,, u, ...; vy,
Uy, ...; Wy, Wy, ... such that (a) for each i u;e L, nBd(R,), v;e L, " Bd(R,),
and w;e L; " Bd(R;), (b) uy, u,, ... converges to a point u; v,, v,, ... converges
to a point v; wy, w,, ... converges to a point w; and (c) the limiting set L (see
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[6]) of L,, L,, ... contains u, v, w and is a connected subset of a component C
of LN R;, where C, L,, L,, ... are distinct.

Proof. The proof follows by modifying the proofs of Theorem 11, page
90, and Theorem 58, page 23, of [6] and also noting the fact that a
modification of Lemma 6 of [9] yields that every infinite sequence in M has
a convergent subsequence.

THEOREM 3. Suppose C is a locally connected metric continuum, H a
totally disconnected closed subset of C, and R a countable subset of C such
that every limit point of R is a point of H. Then, there is a tree T containing R
and lying in C.

Proof. Let G;, G,, ... denote a collection of finite covers of C by
connected open sets such that (1) each G, refines G, and (2) the diameter
of each element of G, is less than 1/n. Let xoe C—R.

First let gy, ..., g; denote all the elements of G, which contain a point
of R. There is an arc x,p, from x, to a point p, of R in g,. Next let j,
denote the least index t so that g, N xq p, is void. There is an arc g, p, from a
point g, of x,p, to a point p, of Rng;, so that xop; Nq, p; = {q2}. Let j,
denote the least index t so that g, n[xop, Uq,p,] is void. There is an arc
g3 py such that pyeg;, "R and ((xop, U g, p;) " g3 p3) = g3. Continuing in
this way we find a tree T; such that (1) T; intersects each g;(1 <i <j) and (2)
T, is the union of arcs Iy, ..., I, so that (a) ;AR is not void (1 <i<n,)
and (b) if 1 <i then I;n[I;u ... ul;_;] is an endpoint of I,.

Now suppose T;, T, ..., T, have been defined where (1) T, is a finite
tree intersecting every element of G, U ... U G, which contains a point of R,
and (2) T, is the union of an analogous collection of arcs as above. Let the
elements of G, which contain a point of R be labeled h,, h,, ..., h,, and for
each i (1 <i < x) let k;y, ki3, ..., k;,, denote the elements of G, , which lie in
h; and contain a point of R not in 7,. Now making changes only in h, we
add to T, to form a finite tree S, such that (1) T, = §,, (2) S, meets every
element of ky,, ky,, ..., ky,,, and (3) S, is the union of such a collection of
arcs as above. Analogously, we form S, to take care of kjy, ka3, ..., k3,
while making additions only in h,. We continue in this way to find
S3, ..., S, and let T,,, = S,. Note that every arc added to form 7,,, from

T, is a subset of some element of G,. Finally we let T'=CI( T,).
- 1

Clearly T’ is connected and contains R. To show that T’ is locally
connected, first let xe T'—H. There is a positive integer n such that the
distance from x to H is greater than 1/n so let N(x, 1/n) be the open
neighborhood of x of radius 1/n. Since M — H contains no limit points of R,
let RAN(x,1/2n) = {ry, ..., r;}, and let m be an integer greater than 4n so
that if g, g’ are elements of G, containing elements r, r' of C, respectively,
wherer=r;(1<i<j)and r=r,(k#i)orreC—N(x, 1/2n), then gng' is
void. ’
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If 1<i<j, then by the construction above r;eT,,,, and if g,
g2, ..., g, g are elements of G, (t=>m+1) and reg;, (1<i<j) and ¢
contains some re R—ry, ..., r;] and a change is made in g to form T, ,,
then no change is made in N(x. 1/4n). Thus, since T, is locally connected
at x and T, ;A N(x, 1/4n) =T~ N(x, 1/4n), T  1s locally connected at x.
T' is locally connected at every point, since if not, by Theorem 2, T' would
fail to be locally connected at each point of some nondegenerate
subcontinuum of T'. This is impossible since T’ H is totally disconnected.

T' is the closure of the union of a countable collection of arcs I,,
I,, I, ... such that (1) each I, contains a point of R, (2) each I,,,
NI, U ... ul,) is a single point, and (3) if U is an open set containing H,
then there is a positive integer N such that if p> N, then I, < U.

Let s,, s;, ... be a countable set dense in T’ and such that if J is a
simple closed curve in T, then there is an arc S, Sn, lying in J, where s, s,,
lies in a segment cd of some I, where c¢d is open in T’ and contains no point
of R. Let V denote the set of all such arcs Sa, Sn, @nd let the elements of V be
labeled vy, vy, ... Now let W, = T'—segr,, where segub mecans arcab
—a, b). If W, contains a simple closed curve, then let j, be the least integer
t such that v, lies in such a simple closed curve and segu, is open in W,. Let

W, = W, —segu;,. We continue the process to find v;,, Wy, v;,, W, ... Let T
a0

denote the continuum N W,.

1
Let xe T—-H and U be an open set containing x such that U =« C—-H.
There is a positive integer N so that n > N implies I, c M-U.

If v;, intersects U for infinitely many i, then the properties of Ty imply
that there is an arc « such that sega is open in Ty, lies in U, and intersects
two of the v;,. This means one of the v;, cannot lie on a simple closed curve
in W,.

If Lj, does not intersect U for infinitely many i, then there is a positive
integer n such that TnU=T,nUcU cU cC-H.

If Tis not locally connected at x let L,, L,, ..., L be as in Theorem 2.
This situation is impossible since every nondegenerate subcontinuum of T,
contains a segment which is open in T,. Thus Tis locally connected at each
x in T—H. As above, since TnH is totally disconnected, T is locally
connected at every point.

THEOREM 4. Suppose (1) P is totally disconnected and (2) M—P is
connected. Then. there is a well ordered sequence |N,: ac A} of separable
compact subsets of M such that (1) if a, be A and a < b, then N, < N, and
N,—P is a locally connected subset of Int(N,—P), (2) if a€ A and C is a
component of M—N,, then card(Bd(C))<2, (3) cardA<N,, (9 M
—Pc | N,, and (5) if B=(ay, a,, ...) is a subsequence of A and C, is a

acA
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component of N, —Cl( ) N,) for each a;c B then (i) each —C— is a locally

a<a;
connected metric continuum, (ii) if P, eC . Jor a;e B and there is a point R of
M such that if R is an element of the open set U, there is an index i so that if
i <j then P,,je U. then for each such U there is an index i so that if i <j then

C—a,-CU and (iii) wunder the hypothesis of (i) if R¢P, then
IR} L (U C, ) is locally peripherally finite at R.

Proof Let H denote the set of all countable subsets Q of K = [A4’, B']
such that 4’, B'eQ and 3 < cardf(Q).

LEmMMA 4A. Suppose that QeH and A,, A,,... and B,, B,, ... are
orderings of the elements of Q such that A, =B, =A, A,=B, =", and if
i#j then A;# A; und B; # B;. Let X,, X,,... and Y,, Y,, ... denote
sequences of finite subsets of K such that (1) X, = A,. A,. A5}, Y,
= {By, By, B3}, () X, c X,syand Y, Y, for p=1,2,...,(3) if X, (resp.
Y,) has been defined, then X,., (Y,+,) is the smallest set T such that (i)
X,cT(Y,cT. () A,.,€T (B,.,€T). and (4) if each of p, q. r. s is an
element of X, (Y,) and 1 =(p, q), J =[r, s] and f(I) intersects f(J), then T
contains x;;, X3y for x=a, b, ¢, d. Then )X, =)Y,.

Proof. Clearly X, = {4,, 4,, A;} <Y, since A; = B; for some j and
X, < Y,. Now suppose X, < Y,. Since 4,,, = B; for some integer s, then
Xp+1 < ¥4 By induction UX, =Y, and likewise ()Y, = UX,.

‘Definition. Given Q in H define L(Q) to be {JX,, where the X,’s are
defined in Lemma 4A. Define F(Q) to be f(L(Q)).

LemMMma 4B. If QeH and C is a component of M—F(Q), then
Bd(C) = F(Q) and card Bd(C) < 2.

Proof. Let E denote the set of all subsets of K which are maximal

relative to the property of being convex subsets of K— L(Q). Let coe C and
suppose the element (r, s) of E intersects f ~!(c,). Let H' = {ge E| there exist
elements go = (r, s), g,, .... g, = g of E such that f(g,) intersects f(g,.,) for
p=0,...,n—1}. Since some card(f(X,)) = 3 by Lemmas 6, 7 of [10], (1) if

(u, v)eH’ then {f(u), f(v)} = (f(r), f(s)}, and (2) if (t, weH’ :, eL(Q),
z,€(t, ), and f(z;) = f (z), then f(z;)e | f (), f (s)}. Therefore f (UH') L ( f(r),
f(s)} and f(K—UH") U | f(r), f(s)} are two closed sets whose union is M and
whose intersection is {f(r), f(s)}. Also, since F(Q)<f(K—UH)u {f(r),
f(s)} and M is a locally connected continuum, then Bd(C) is .a subset of F(Q)
and therefore of {f(r), f(s)].

LemMma 4C. If Q,, Q,, Qs, ... is a countable sequence of elements of H

such that Q, = Q, = Q3 < ..., then F(UQ,) = CI{UF(Q.)-

Proof. Suppose that A,, A,, ... 1s an ordering of the elements of (JQ,
and 4§, A5, ... is an ordering of the elements of Q, (p=1,2,...), as in
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Lemma 4A. Also, as in Lemma 4A let 4,, A,, ... define X,, X,, ... and let
A%, A%, ... define X%, X5,... (p=1,2,..)).

Let p be a fixed positive integer. Since A5 = A, for some integer g, then
X! = X,. Now suppose XP < X,. There is a positive integer s such that
Af,, = A;. Therefore X¥,, c X,,,, and |JX? < JX; by induction. Since p
was arbitrary, we have |J X? <) X,.

Now A; = A? for some D, j,n so X; < Xf. Now suppose X, c X, and
let Aj=A;j' for j=1,...,r+1. Also let t=supfit,,...,t,+,}. Since
Q,<Q;<cQ3< ..., then 4,eQ, fori=1,...,r+1. Thus let 4, = A for i
=1,...,r+1. If u=supla,,...,a,,}, then X,,, c X;. By induction
U X, <= U X%, and hence the two sets are equal.

n p.n

Now

F(U Qn =/(CHUX,) =f(Cl(H X7)-

But
CIU F(@.) = Ci(U ey xn)) = ci( f(Ln) (Cl(g x9)),

which is f (Cl (U(Cux ,’,’)))) by the compactness of K and the continuity of f.
n P

Trivially
s €y x2))) =7(Cuy X3).

Definition. If Qe H let G, denote the set of all components g of
M —F(Q) such that §n P is void, and let G, denote the set of all such g
where g P is not void.

Lemma 4D. Let QeH and let N =F(Q)u(UGg). Let Ly, (resp. L)
denote |x| xe M — P and there is an element g, of Gy (Gy) such that xe Bd(g,).
Then (1) if xe Ly, then there are only finitely many elements g of Gy such that
xe Bd(g), (2) if y is a limit point of Ly, then ye P, (3) there is a separable open
set Uy such that F(Q)—P < Uy, and Gy L Gy, is countable, (4) N is a closed
separable subset of M so that N—P is locally connected, and (5) if C is a
component of M— N then card(Bd(C)) < 2.

Proof. The proofs of (1), (2) are analogous, so we prove only (1).
Suppose {g,, g;, ...} is a countable infinite subset of G;, such that xe Bd(g;)
fori=1,2,...,and let Bd(g;) = {x, y;}, i =1, 2, ... Since some subsequence
of the y’s converges to a point v, without loss of generality we suppose
Y1» Y2, ... converges to v. Let h: M - [0, 1] be a continuous map so that
h(x)=0 and h(P)=1. There is a number ¢t in (0,1) such that

h™' (1) n({v} u(U Bd(gy)) is void. Since each g; is connected, there exists a
1

point u; in g;"h™'(t), so let u be a limit point of {u,, u,, ...}
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Let U be a connected open set containing u such that
0 = M—({v} Uk~ ({0, 1})),

and let n, be a positive integer so that if i > n, then y;¢ U. Let i, j be
positive integers so that i > j > n, and ;, u;e U. But Bd(g;) separates g; from
g; in M and U is a connected open set lying in M —Bd(g;) and intersecting g;
and g;. This involves a contradiction.

(3) Since L(Q) is countable, L(Q) intersects only countably many
intervals I such that the endpoints of I lie in f ~!(P), and Int(I)nf~!(P) is
void. Let I, =[a;, b;], i =1, 2, ..., denote the set of all such intervals I. Also
since L(Q) is countable, there is a countable subset y,, y,, ... of K—f~1(P)

so that if ze L(Q) N (ay, by), then there exist y;, y; such that g, <y, <z < y;
< b,. For each such pair i, j for which there exist such a z, k as above let
A(i, j) be a finite cover of f([y;, y;]) by connected open sets whose closures
are compact metric and lie in M — P. Let B(i, j) = |JA(i, j) for each such pair
i, j and let U, denote () B(i, j). Clearly Uy, is a separable open set such that
F(Q)—P c U,. Also s(i;z:e UQ is separable and each element of G, U Gy has
a boundary point in F(Q)— P, then Gy U G; is countable.

(4) Since each element g of Go has the property that § « M —P, then g
is covered by a finite number of metrizable open sets, and is thus separable
and metrizable. Therefore N is separable and properties of local connectivity
may be used to show that N is closed.

Now let xe N— P and U be an open set containing x. By (1), (2) there is
an open set U’ so that U' < U—P and U’ n L, < {x}. Furthermore, if xe I,
then the elements g of G, where xe Bd(g) may be labeled g,, g5, ..., gu-
There is an open set U” so that xeU” < U’ and Bd(g,)nU" = |x] for
i=1,2,...,n Since M is locally connected at x, there is a connected open
set V so that xe V< U". For each g; (1 <i<n), Vny; is a connected open

set V; so that {x} UV is open in {x} Ug;. It is easily seen that V—() V. is a
1

connected open subset of N contained in U. It follows in this case that N
is locally connected at x. If x¢ L, then xelInt(N), and the proof is trivial.

(5) The proof of (5) follows from Lemma 4B.

This completes the proof of Lemma 4D. We continue the proof of
Theorem 4.

Let Q, be an element of H, let M, = F(Q,), and let N, = M, u(UGg,)-
With the aid of Lemma 4D there is a separable open set Ug, such that
(1) Ny—Pc Uy, and (2) if ge Gy and there is an arc ab in §— P whose
endpoints are the points a, b of Bd(g), then Uy, contains one such arc. Let
Q, denote a countable set such that Q, = Q, and F(Q,) > UQl We define
M, to be F(Q,) and N, = M, U(UGy,).

Now suppose that countable well ordered sequences Q,, Q,, ...; M,,

6 — Colloquium Mathematicum L.2
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M,,...; Ny, N,, ... have been defined, but that (JN; » M — P. If there exists
a last term Q,. M,. N,. respectively. for each sequence define Q,.,, M,,,,
N, 4, analogously to the way Q,, M,, N, were defined from Q,, M,, N,.
Now suppose there is no last term, but that § is the first ordinal
following 1, 2,... Define @y = U Q,, My = F(Qp) and N; = Mﬁu(UGQﬂ

1 fi
If U N,pM—Plet xeM;—P and let ye M—(Pu( (U N,)). Since

a <N a<\N
M—P is clonnected then by use of a finite chain of connectecli metrizable
open subsets of M — P, we find there is a metrizable arc xy from x to y in
M —P. Since xy €« M— P, then xv intersects Uy — N,. The set of all sets of
the form xy n(Int(N,,,)— N,)*would thus be an uncountable collection of
mutually exclusive open subsets of a separable set, a contradiction.

Part (1) of the conclusions of Theorem 4 holds by construction and
Lemma 4D. Part (2) holds by Lemma 4D. Parts (3) and (4) hold by the
above remarks. We now show (5) holds.

(51) If C is a component of N,,—CI(U N,) then by construction,

a<a

Lemma 4C, and Lemma 4D, C has at most two boundary points {x, y} in
CI(U N,). By Lemma 4D C is locally connected at each point of C—P, so

a<a

C is locally connected at each point except, for possibly points of
'x, 1 U(C N P), which is totally disconnected. By Theorem 2, if C fails to be
locally connected at some point it fails to be locally connected et each point
of some nondegenerate subcontinuum. Thus, C is locally connected.

Now N, is separable, so let D be a countable subset of f ~! (N, ) so that
f(D)=N,.. By Lemma 2 of [9] Z =Dnf~'(C) is separable and so f(2)
=C is separable By Theorem 1 of [10], C is metrizable.

Suppose there is an open set U; containing R such that for each g; there
is an a;>a; such that C, & U;. Let U,, U, be open sets such that
ReU,cU,cU,cU,c Ula. By applying the ideas of Theorem 2 we find
a subsequence ‘b,, by,... of a;, a,,... and (1) a sequence Up s Upy, -
converging to a point u of Bd{U,); (2) a sequence Up,» Up,» --- CONVErging to a
point v of Bd(U,) and (3) a sequence Wp,» Ws,, ... CONverging to a point w of
Bd(U;), where (4) u,, vb, w,, € Cy, for each i. Let U, V, W be disjoint
connected open sets contammg u, v, w, respectively. For some j C,,J, Cs. 41
each intersect all thrée of U, V, W. The component S of M—N,, which
contains C,, i+ has at most two boundary points and one of U, V, W (say V)

contains none of these. But SNV n V—S does contain a boundary pomt of

S, a contradiction.
Now let ReU = U® and R¢ P. Also let Re V=V°c Vc U—-P and let

C c Vfor i <j. Since C,, i» Cop» P are dlSjOll‘lt for j>iand |[j—k| > 2, then
usmg Theorem 4 (5i) it follows that C, v (U C,. Y {R} is both open in and

Jj=i

has at most a two point boundary relative to {R}u (U C )
eB
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This completes the proof of Theorem 4.

THEOREM S. If P is totally disconnected, then M is the continuous image of
an arc.

Proof. We first assume that M —P is connected and let Q,, M,, N,,
o€ A, be as in Theorem 4. We recall that if xe A and C is a component of
M — N, such that (1) C ~ P is not void, (2) C has boundary points a, b in N,
such that there is an arc ab in C— P from a to b, then Q,, , is chosen so that
its closure contains such an arc.

Since N, is separable and locally connected at each point of N, —P,
there are only countably many components of N, which contain a point of
N, —P, so let these components be labeled C,,, C,,, ... We note also that
(1) Theorem 4 implies that each C,; is a locally connected separable metric
continuum, and (2) the local connectivity of N, — P implies that if U is an
open set containing P, then U contains all but finitely many C,;s. Lemma
4D helps imply that PU Ly, is a totally disconnected closed set, so by
Theorem 3 there is a tree Tj; lying in C,; and containing (P u Ly,) N C,; for
j=1,2,... Let T, = Pu( T;;) and note that (2) above implies that T, is

J

closed.

Let C,4, C,,, ... denote the set of all closures of components of N,— N,
which contain a point of M — P. As above (1) each C,; is a locally connected
separable metric continuum and (2) if U is an open set containing P, then U
contains all but finitely many C,;’s. For each j let T,; denote a tree in Cy;
containing C,;n(PULy ULy) and let T, denote the closed set

TuU T).

Suppose C;;, T;;, T; have been defined for i in an initial segment s of 4,
and B is the first term of A following each term of s.

Case 1. Suppose f has an immediate predecessor f— 1. Analogously to the
case B =2 let Cpy, Cpy, ... be the closures of components of Ny,—Nj_,
which contain a point of M — P. For each j let T;; be a tree in Cy; containing

5i N (PuU Lqﬂ . uLQﬂ) and let T; denote the closed set T;_, u(U Tg)).

Case 2. Suppose B has no immediate predecessor. Recall that Qs
= U Q.. We let Gy, Cp,, ... be the closures of the elements of Go,-

a<p

For each j let T; be a tree in Cj; containing Bd(Cgj). Let Tj
=(U DV T,) UBd(M,).

a<

We note that Bd(M,) is totally disconnected, for if not, there is a
nondegenerate continuum X lying in (M —P)nBd(M,). Let x;, x,, x; be
three points of X and let U,, U,, U; be disjoint connected open sets lying in
M —P such that x,eU,, p=1, 2, 3. Let y; (i=1, 2, 3) denote a point of
Int(Mg) N U; and let x; y; denote an arc from x; to y; in U;. Let m denote the
least index ¢ such that each of y,, y,, y; belongs to N,, and let g; denote the
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3
component of x;y;— N,, containing x;. But X U ({J g;) lies in a component of
1

M —N,, having at least three boundary points in N, a contradiction.
We also note that the local connectivity of N;—P implies that
Py Bd(M,)u(U Tp;) is closed. If x is a limit point of T;, then xeInt(My)

implies x is a hmlt point of T, for some a < B, so xe, < T;. If xeM
—Int(Mj) then x is an element of PUBd(Mg)u(l) Tp). Therefore T; is
i

closed.
We define T=|) T, and proceed to show that T is closed, connected,

and locally peripherally finite.

First let U be an open set containing P. Since each point of M—U
belongs to some Int(N,—P), then M—U is covered by a finite number of
such sets. Since {N,, ae A} is monotone, M — U < Int(N,— P) for some index
b. Since TNn(M —-U) = T, n(M —VU) it suffices to note that each such T, is
closed, for if xe T— T, then U could be chosen so that xe M—U.

To show that T is connected let xe T;; — P and suppose y belongs to
some 7;,1 P. There is an arc xy from x to y lying in M —P. Let W denote
the set of components of xy— ((Ul_,(2 JuY) where Y={) Bd(My)| B is a
limit ordinal in A}. Each w in W is a subset of a set C; ik, Where T, ;

contains the endpoints of w. Thus (xy—UW)u() T, ) is a connected
weW

subset of T containing x, y. Since the component of T containing x contains
T— P and since P =« T—P, then T is connected.

We now show T is locally peripherally finite. Now J = Yu Pu(ULy) is
a totally disconnected closed subset of T If xe T-J then xelInt(C;;) n T for
some i, j. But TnInt(C;;) = T; nInt(C;;) and T;; is locally pernpherally finite
at x, and Tis also. Let xeJ and let U be an open set containing x. Since J is
totally disconnected, there is an open set V so that xe Ve V< U and
J nBd(V) is void. There is a collection Vi, ..., V, of open sets so that (1)
Wi, ..., V, covers Bd(V), (2) each TnBd(V)) is finite, 1 <i < n, and (3) each
V. < U J.If R = VU(U V), then xeR' < U and TnBd(R’) is finite.

By Theorem 7 of [12] Tis the image of an arc I under a continuous
map y.

For each set C;; as defined above we let x;; denote a point of I such that
g(x;;)€ C;;. For each such pair i, j let I;; = [0, 1] x {(i, j)} and let g;;: I;; —> C;;
be a continuous onto map such that g;;(p x(i, j)) = g(x;j), p=0, 1. For each
i, j replace x;; by I;; in order to form a space J' with the obvious order and
the interval topology. Define a map g: J'— M so that §(x) =g(x) if x¢I;
for any i, j and g(x) = g;;(x) if xel;;.

Since M = Tu(lJ C;)), then g is clearly onto. We need only show that g

LJ
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is continuous. Since g is continuous on Cl(J'—( 1)) if g is not continuous,
i

there are a point x of J' and an open set U containing g(x) so that if Vis an
open set containing x there is a set I;; so that I;; = Vand g(I;;) ¢ U. Let R,
denote an open set so that g(x)e R, = R, < U, and for each i, j let {q;, b;;}
denote C;; A N;_, if i has an immediate predecessor and denote M;n C;;,
otherwise. By using f ! and the fact that every infinite sequence in J' has a
countable convergent subsequence, we may assume without loss of generality
that there is an infinite sequence (il, ji)s (iz, ja), ... such that (1) | i i
converges to a point a’, (2) {b; ..J..ln-l converges to a point b, (3) each C; ;
intersects R, and M —U and (4) !i,) 2, is either constant or increasing (smce
only a finite number of steps may be taken backwards in a well ordered
sequence). '

Case 1. Assume i; <i, <iy < ... We apply Theorem 4 (5) to find that
there is a positive integer N so that if n > N then C; ; < W, where Wis an
open set lying in U if a’'e R,, and Wis an open set in M —R, if a'¢ R,. This
involves a contradiction.

Case 2. Assume i, =i, =i3 = ... and i, is not a limit ordinal. Since
each open set containing P contains all but finitely many C, ;’s, there is a
point z of the limiting set of the C; ;’s in P. Since ze P let W X be disjoint
open sets covering Pu {a’, b’} so that ze Wand Wis as in Case 1. Since an
infinite number of the C; Jn S Intersect W and lie in Wu X, they lie in W, a
contradiction.

Suppose i; is a limit ordinal. The limiting set of the C;;’s is a
nondegenerate continuum X, so let xe X —(Pu Bd(M,-l)). Since N;, is locally
connected at x there is a connected open set Wof N; which contains x and
no point of Pu Bd (M,-l). Thus, Wis a subset of a single C ;j and intersects
infinitely many of them, a contradiction. Therefore § is continuous and the
case where M — P is connected is now complete.

Suppose M—P is not connected and {C,: ae A} is the set of
components of M —P. For each aeA let T, be a nondegenerate locally

peripherally finite continuum in a containing Pna. As in the arguments
above the local connectivity of M may be used to show T"= () T, is a

aeA

continuum which is locally peripherally finite at each point of T'— P, and
thus, by an argument analogous to the one that T is locally peripherally
finite at each point P, so is T'. By Ward [12] T is the continuous image of
an arc A under a map g. For each ac 4 let y,e T,— P and let x,eg™ ' (v,).

Now with the aid of the first part we find for each xe 4 an arc B, and a
continuous onto map g,: B,— C,, where (1) if B, =[a,, b,] then g.(a,)
= g,(b,) = y,., and (2) if « # o’ then B, N B,. is void. We now construct an
arc J by replacing each x, in B by B, and giving J the interval topology. We
define a map §: J > M by g(x) =g(x) if xe B—!{x,, xe A! and g(x) = g,(x)
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if xeB,. g is clearly onto, and the continuity of g is established much the
same way as in the case where M — P is connected. This completes the proof
of Theorem 5.
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