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1. Introduction. Let S>™*! be a (2m+ 1)-dimensional unit sphere. We
know that $2™*! admits a standard Sasakian structure (cf. [5]). We denote
by (@, &, n, g) the structure tensors of S2™*!. Let M be an (n+ 1)-dimension-
al submanifold isometrically immersed in S2™*!. We denote by the same g
the Riemannian metric tensor field induced on M from that of §2™*!,
Throughout this paper, we assume that the submanifold M is tangent to the
structure vector field & of $2™*!. When the transform of the normal space
T.(M)* of M by ¢ is always tangent to M, that is,

OT.(M)* =« T,(M) for any xeM,

T.(M) being the tangent space of M, then M is called a generic submanifold
of $2m*1 (cf. [4)).

For any vector field X tangent to M, we put ¢ X = PX + FX, where PX
is the tangential part of ¢ X, and FX the normal part of ¢ X. Then P is an
endomorphism on the tangent bundle T(M). We denote by S the Ricci
tensor of a generic submanifold M of $2™*! If S satisfies

S(*X, 9’ Y) = ag(¢* X, ¢* Y)+bg(P$* X, PH*Y),

where a and b are constant, then M is called a pseudo-Einstein generic
submanifold (cf. [3]). We notice that the subspace of T,(M) orthogonal to ¢
is spanned by all vectors ¢>X, where X eT,(M). Let S™(r) be an m-
dimensional sphere with radius r and RP™ be the real projective space of real
dimension m. We denote by (S', RP™) the circle bundle over RP™.

The purpose of the present paper is to prove the following

THEOREM. Let M be a compact orientable (n+ 1)-dimensional generic
minimal submanifold of S*™*!. If the Ricci tensor S of M satisfies

S(¢*X, $*X) = (n—1)g(¢* X, ¢* X),
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then M is (S', RP™ (n=m) or M is the pseudo-Einstein hypersurface
S™(r) xS™(r) (r = /1/2, n=2m) of $*™*1,

2. Preliminaries. Let M be an (n+ 1)-dimensional submanifold of $2™*1.
The operator of covariant differentiation with respect to the Levi-Civita
copnection in $2™*! (resp. M) will be denoted by ¥ (resp. V). Then the Gauss
and Weingarten formulas are given, respectively, by

PxY=VyY+B(X,Y) and VPyV=—-A4,X+DyV

for any vector fields X and Y tangent to M and any vector field V normal to
M, where D denotes the operator of covariant differentiation with respect to
the linear connection induced in the normal bundle of M from that of $2™*!,
A and B appearing here are both called the second fundamental form of M
and are related by '

g(B(X,Y),V)=g(4y X, Y).

For any normal vector field V, A, is a symmetric linear transformation on
T.(M). If Tr A, = 0 for any normal vector V¥, then M is said to be minimal.
We see that M is minimal if and only if TrB=0. Let R denote the
Riemannian curvature tensor of M. Then the Gauss equation is given by

R(X,NZ=g(Y,2)X-g(X,Z2)Y+} g(4, Y, Z) A, X~ Y g(4. X, Z) A, Y,

where we have put 4, = 4, , {v,} being an orthonormal frame for T,(M)".
p . J

We define the covariant derivative Vy A of the second fundamental form A
by

(Vx A)V Y = Vx(Ay Y)—ADXV Y—AVX Y.
If VxA =0 for all X, then the second fundamental form A4 is said to be
parallel. The Codazzi equation of M is given by
(PxAw Y =(Vy Ay X.

Since the structure vector field ¢ is tangent to M, for any vector field X
tangent to M we have

Vyé=0¢X =Vy¢+B(X, ),
whence
PX =Vx¢{ and FX =B(X,J).
Moreover, we obtain

Ay€='—¢V and Vx¢V=—PAVX+¢DxV
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We notice here that the second fundamental form A of M satisfies
Apx Y = Apy X

for any vector fields X, Y in ¢T(M)* (see [3], p. 169).
If the second fundamental form B of M is of the form

B(X, Y) = n(X)FY+n(Y)FX

for any vector fields X and Y tangent to M, then M is said to be contact
totally geodesic. We easily see that M is contact totally geodesic if and only if
B(¢*X, 2Y) =0 for all X and Y. We see that (S!, RP™) is contact totally
geodesic in S2™* !, The second fundamental form of (S!, RP™) is parallel. The
Ricci tensor S of (S!, RP™) is given by

S(¢*X, ¢*Y)=(n—1)g (¢’ X, $*Y).

Thus (S!, RP™) is a pseudo-Einstein anti-invariant submanifold of $2™*! (see
[5], p. 343).

If M is a compact hypersurface with parallel second fundamental form
of §2m*1 then M is SP(r,) xS%(r,) (cf. [4], p. 40). Furthermore, if M is a
pseudo-Einstein minimal hypersurface satisfying the condition on the Ricci

tensor S in the Theorem, then M is congruent to $™(r) xS™(r) (r = \/1/2) (see
[3] and [4)).
We use the following lemma:

LEMMA ([2]). Let M be an (n+ 1)-dimensional minimal submanifold of
S§2m*1  Then

34X TrA2) = (n+1)Y. Tr A2 - Y (Tr A, 4,)*+ ¥ Tr [A,, 4,1 +g(VA, VA).
a a ab ab

Since the (2m—n, 2m—n)-matrix (Tr A, A,) is symmetric, it can be
diagonalized for a suitable choice of a frame v,! at each point of M so that

Y (Tr A, 4,)> = ¥ (Tr A2)?2.

3. Proof of the Theorem. From the equation of Gauss, the Ricci tensor
S of M is given by

S(X9 Y) =ng(Xa Y)—zg(AaZX’ Y)

In accordance with the assumption on the Ricci tensor S, we see that

(.1 9(¢*X, ¢*X) 2 Y 9(4,¢* X, 4,6’ X) 2 0,

whence

gV, V) =3 g(A, 9V, A, ¢V) > 0.

8 — Colloquium Mathematicum 56.2



314 M. KON

We now take an orthonormal frame tey, ..., e,, &} of T,(M). Then we find
Z:,g(Aad?V, A, pV) = ;g(Aad’V, e)g(4, oV, e)+ Za:g(Aad’V, g4 0V, 9)
= OZ:,Q(AMV, e)g(A, oV, e)+g(V, V).
Therefore we obtain |
EQ(AMV, e)g(4, ¢V, e) =0,

and hence g(A4, ¢V, ¢) =0 for all a and i, which means that
g(A4. 0V, 6> X) =0
for any vector field X tangent to M or, equivalently,
g(4. 8V, X)—n(X)g(4, ¢V, ) =0.
Thus we have
(3.2) A, 9V =g(A, 8V, &= —g(dV, pv) & = —g(V, v)¢.
On the other hand, (3.1) implies

n= Zg(e.-, e,') = Zg(Aae.-, Aaei)

= z g(Aaeis ej)g(Aaei’ ej)+ Zg(Aaei, é)g(Aaei’ é)

ki a,i
= Z g (Aa €, e.i)g(Aa €is ej) +p,
a,i,j

where p denotes the codimension of M, that is, p = 2m—n, which reduces to

(3.3) n—pz2 Z g(A,e, e)g(A, e, €).

a,i,j

We can take an orthonormal frame ley, ..., €,_,, ¢Vy, ..., dv,, &} of
T,(M) such that {v,, ..., v,} forms an orthonormal frame of T,(M)". Then,

by (3.2), 4, is represented by a matrix form

s 0 O
(34) 4=l 0 o -1 |
0 -1 0

where h;'s = g(Aaeu es) (t9 s = 1’ vy n—P), g(Aa ¢vbs C) = —‘sab’ 6ab bemg the
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Kronecker delta. For each a we put
a
-

0
ofo ]’

which is a symmetric (n, n)-matrix. By a straightforward computation we
obtain

TrA2=TrH?>+2, TrA%=TrH:+2,
ZTI [Aa’ Ab]2 = ZTI’ [Ha’ Hb]z—zp(p— 1)9
ab a,b

(Tr A?)? = (Tr H)?+4Tr H? +4.
Substituting these equations into the formula of the Lemma, we find

(35) g(VA, vA)—-34(0 . TrA2) =Y (TrH})*+4) TrH2+4p
— Y Tr[H,, H,*+2p(p—1)—(n+ 1)), TrHZ—2(n+1) p.
ab a

On the other hand, we can choose le,, ..., e,-,} such that hf =0 when
t#s. Weput iy =hy (t=1,...,n—p). Then

- ZTT [Ha’ Hb]z = Z (hfs)z(hf_h:)z < 4 Z (hfs)z(h:)z'
b

b+#a,t,s b#a,,s
From (3.1) we have

Y () <g(@’e, d?e)—(h)* = 1-()?

b#a,

for each s. Thus we have

— Y Tr[H,, H,)* <4TrH2—4Tr H?.
b

Since rank H, < n—p for each a, we obtain
(Tr H»)? < (n—p) Tr HZ.

If n=p, that is, if M is anti-invariant in $>™*! then H, =0 for all a.
Therefore, M is a contact totally geodesic anti-invariant submanifold of
§2m*1 Since the second fundamental form of M is parallel and is given by
H, =0 in (3.4), we see that M is (S!, RP™ by the fundamental theorem of
submanifolds (cf. [1], p. 207).

Next we assume that n > p. Then

4
- ZTI'[H.;, H,] < 4TrH3-;"—p(Ter)2
b —_—

for each a. Suppose now that n—p—4 > 0. Then (3.5) and the inequality
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above imply

g(VA, VA)~4 4(Y Tr A2) < ";f;"[Z(Ter)z—(n-p)ZTer]

—(p=3)Y. TrHZ—-2p(n—p)

< n;f;4[ZTer—(n—p)](ZTr H?)

—(p—3)Y TrHZ-2p(n—p),

whence
[[9(VA4, A +(p—3) Y. Tr H2 + 2p(n—p)]* 1
M a

<n—p—4
n—p

[ TrH2—(n-p] (X TrH2)* 1.
M a a

From (3.3) we see that
n—p>Y TrH;.

Thus the right-hand side of the inequality above is non-positive.
If p> 3, then VA =0 and n = p. Since p < n, this is a contradiction. If p

= 2, then
(p—3)Y TrHZ+2p(n—p) = —(n—2)+4(n—2) =3(n—2) > 0.

Again this is a contradiction. If p =1, then
(p—3))Y. TrH?+2p(n—p) = —2(n—1)+2(n—1) = 0.
Consequently, we obtain VA = 0, that is, the second fundamental form of M

is parallel. Moreover, we see that

YTrA =n+1=2m

and M is a pseudo-Einstein hypersurface of $?"*'. Then M is $™(r) xS™(r)
(r=,1/2). ’ _
We next suppose that n—p—4 <0. Then n—4 <p <n. Since n+p is
even, it follows that p =n—2. On the other hand, (3.2) implies
(VX A)a ¢va+Avaa ¢va_Aa PAa X+Aa ¢DX Vg
= —g(Dxv,, va)é—g(va, Dy va)é—g(vas va) VXé
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From this, using (3.2), we obtain
g(VxA). Y, dv)) =g((Vx Aadva, Y) =g(4, P4, X, Y)—g(PX, Y).
Therefore, the Codazzi equation implies that
g(A,PA, X, Y)—g(PX,Y)=0.
Putting Y = PX, we get
g(A,PA, X, PX) =g(PX, PX).

Since p = n—2, the holomorphic subspace PT,(M) is spanned by X and PX,
where X is a unit vector in PT,(M) such that 4, X = AX. We can take such
a vector X by (3.4). From the minimality of M we obtain A, PX = —APX.
We then have

g(4,PA, X, PX) = —1*g(PX, PX) = g(PX, PX),

which implies 12 = 0, and hence PX = 0. This is a contradiction. From these
considerations we have our assertion.
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