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ON CARTESIAN POWERS OF 2-POLYHEDRA
BY

WITOLD ROSICKI (GDANSK)

1. Introduction. In paper [3] we have proved that if K and Lare compact
connected 2-polyhedra and their Cartesian squares K2 = K x K and I? = Lx L
are homeomorphic, then K and Lare homeomorphic. In the present paper we
consider the question which is a natural generalization of the question
considered there. Is it true that K and L are homeomorphic if their Cartesian
powers K* and I* are homeomorphic? This question was posed by J. Mycielski
in his letters to R. Engelking and me.

We prove that the answer is “yes” for some classes of 2-polyhedra, but in
the remaining cases the problem is still open.

2. Results. The problem is the easiest when K is a compact 2-manifold with
boundary. This fact was proved by Fox [2] in 1947 for the case k = 2.
Let us start with a definition.

DEerINITION 2.1. Let M be a compact 2-manifold with boundary oM # Q.
We define the number

(M) = rank H,(M)—rank H,(0M)+ 1.

THEOREM 2.1. If M, N are compact connected 2-manifolds with boundary and
M* ~ N* for some natural number k, then M ~ N.

Proof. If the surfaces M and N are both orientable or both nonorientable,
rank H,(M) = rank H,(N) and o(M) = o(N), then M =~ N.
The first condition is obvious. By Kiinneth’s formula, if
HM)~Z", H,N)~Z",
then ,
HMY~Z™ and H(NY=~2Z™.
Since M* ~ N*, we have m* =n* and m =n.
Now, we consider the map
Ly Hk(Mk) - Hk(Mk’ aMk),

induced by the inclusion of the pair (M, J). The image of this map is generated
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by generators {;® ... ®{, such that j ({) # 0 for every i=1, ..., k, where
ju: Hy(M)—> H,(M, 0M)

is given by inclusion. There are exactly a(M) such generators So there are
(ae(M))* generators {,® ... ®{, such that

l*(C1® ...®L) #0.

Since M* ~ N* we have (a(M))* = (6(N))* and (M) = o(N).

Further on in this paper we use the method similar to that used in [3]. We
obtain the affirmative answer for all 2-polyhedra except for the class considered
in Section 6 of [3].

First we prove a lemma.

LEMMA 2.1. Suppose that D,K and D,L are nowhere dense subpolyhedra of
compact connected 2-polyhedra K and L, respectively. We define D K = K,
D,L= L and

X;=U{D,Kx..xD,K:i;=0,1 i;+...+i =i},
Xi=U{DyLx ...xD, L: i;=0,1; iy + ... +i, = i}.

If F: K* > I* is a homeomorphism such that F(X;) = X fori=0,1, ..., k,
then

F(KxD,Kx...xD,Ky=D,Lx...xD/,LxLxD,Lx ... xD,L.
Proof. Let us observe that
F(Xk—l\Xk) = Xﬁ—l\Xi-

A point belongs to X;_;\X, iff one of its coordinates belongs to K\D, K. So,
we can consider a component AxZ,x ... xZ, of this set, where

Ae[(K\D,K), Z,e(dOD,K
(O denotes the set of components). Let
FAXxZ,x...xZ)=A"x2Zy%x...x2Z,, where A'e(L\D,L), Z;e OD,L.

Let B be another component of K\D,K such that 4 " B # &. We will prove
that

FBxZ,x...x2Z,)=Bx2Z)% ... xZ,.
Suppose that
FBXZ,x..xZ)=Z{x..xB"x...xZ,
where B”e[(L\D,L), Z{e(D,L. Since
AXZyx...xZinZix...xB"'x...xZ; # 0,
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there exist points x'€ A' " Z{ and y'e Z;n B”, and Z; = Z/ for the remaining
coordinates. Let a’€ A’, b’e B”. There exist arcs

ax'c Avu{x} and by < B’ uU{y}.
Let us notice that
V=@x)xZ)x ... x(0'Y)x ... xZyc A'xZyx ...xB"x ... xZ,
((xy) denotes the interior of the arc xy). Hence
VnXy-1 =0 and V' cX;_,.
Let
a=FYa,zy,...,¥,...,zt) and b=F \x,z5,....0,...,z),
where z;eZ;. Hence |
acAxZ,x...xZ,, beBxZ,x...xZ,
and there exists an arc ab such that
@) =« F}(V') € F7 U X3-2\Xi-1) = Xi- 2\ Xie— s

But the interior of any arc (ab) = X;_, and the set X,_, are not disjoint,
because every component of the set X,_,\X;_; is of the form

Z, x..xCx...xDx...x2,, where C,De[(K\D,K).

Hence
FBxZ,x...xZ)=BxZ)x...xZ,.

Since K is connected and D,K is nowhere dense, we have

FIKxZ,x...xZ)=LxZyx...xZ,
and
F(KxD,Kx ...xD,K)=LxD,Lx ... xD,L.

We use this lemma in the proof of the following

THEOREM 2.2. Suppose K and L are compact connected 2-polyhedra,
F: K* > I*¥ is a homeomorphism and K has local cut points. Then K and L are
homeomorphic.

Proof. First we consider the case where there exists a point x of K such
that dim K = 1 (where dim K denotes the local dimension of the space K at
the point x). We define

K, = {xeK: dim K =2}, K, ={xeK: dim,K =1}
and analogously L, and L,. Next we define
Y, ={Ki,x...xKy:iy+...4+i =i},
Y, ={L,x... xLy: iy +...+i, =i}
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Let us observe that
= {xeK*: dim K*=2k—i} and Y ={xel: dim[F=2k—i},

so F(Y,) =Y.
Now we write

D,K=K,nK,, D,K=K
and
Xi=U{Di1Kx"'XDikK: i1+...+ik=i}.

The set D,K is finite. Therefore, if we prove that
F(Xi) - X: = U {D,!Lx cee XleL: i1+ vee +ik = i},

we obtain K ~ L by Lemma 2.1.
Since F(Y) =Y, it is enough to notice that

k—i i

Q(j ++ and Xi= UﬂYjH

j=0l=

We will prove the first equality.
Let xeX,;. We can assume that

xeD,Kx ... xD,KxDyKx ... xDyK

i times k—itimes

=KonK)x...x(KgnK)xKx...xK

= O {Kiyx..xK,xKx...xK:i,=0,1; i,+... +i; = j}

= () {Kix...xKyx(KquK)x ... x(KqUK)):
i=0
i,=0,1i+..4+i=j}

= n{K., XK x K, 'XKik: ip=0, 1; il+'°'+ii=ja

i,-+1+... +lk=l}

‘Let xeY,n...nY,,;. If xeY,, then | coordinates of x belong to K,. If
xe Y, then'l+i coordinates of x belong to K,. Hence at least i coordinates of
x belong to D, K = K, n K,. Thus x€ X,. This concludes the first part of the
proof.

Now, we consider the case dim K = 2 for every xe K. The set of local cut
points D K is finite. Let us observe that the assumptions of Lemma 2.1 hold.
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The set
X, =U{D:,Kx...xD,K: i,=0,1; i;+... +i, =1}

consists of those points of the space K* at which the space is locally cut by
a set of dimension 2k—2. Similarly, the set

X, =U{DiKx ... xDK: iy =0, 1 iy +... +iy = i}

consists of those points of the set X;_, at which X;_, is locally cut by a set of
dimension 2k —2i.

Analogous formulas hold for X; < I*.

Hence F(X;)) = X; and by Lemma 2.1 we obtain

F(KxD,Kx...xD,K)=LxD,Lx...xD,L.

So K~ L.

Further on we consider the polyhedra without local cut points only. We
define some subsets of non-Euclidean points of a polyhedron X in the same
way as in [3].

DEerFINITION 2.2. If X is a k-polyhedron, then we define inductively the sets
nX fori=0,1,..., k.

(i) noX =X.

(ii) n,X denotes the subset of n;_ ;X consisting of points which have no
neighborhood homeomorphic to R*~*! or RX™i*! in the set n;_ X.

Remark. It is easy to see that every set n X is a polyhedron and
LEMMA 2.2. If K is a 2-polyhedron without local cut points, then
(K= {n,Kx...xnK:i,=0,1,2; i,+... +i, =i}.

Proof. Let us observe that if xen,K, then each neighborhood of x in
K contains a subset homeomorphic to Tx I (where T~ cone {1, 2, 3} and I is
an arc). If xen,K, then each neighborhood of x in n,K contains a triod T.

We prove inductively:

1° If

xelJ{m,Kx...oxn K: i;=0,1,2; i+ ... +i, =1},

then x belongs to one of the components of the wunion (say
xen,KxKx ... xK). Then each neighborhood of x in K* contains a set
homeomorphic to (Tx I)x I*x ... x I?>, which is not embeddable in R, So

xen,(K*). The inverse inclusion is obvious.
2° Suppose that our formula is true for i < m. Let

xelJ{n,Kx...xn K: i;=0,1,2; iy+... +iy =m+1}.
We can assume that
xen,Kx ... xn,Kxn,Kx ... xnKxKx...xK (2p+r=m+1).

ptimes rtimes
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If r+#0, then each neighborhood of x in n,(K¥ ‘contains a subset
homeomorphic to

{zi}x ox{z}xIx ... xIx(TxD)x*x ... xI?,

r—1times
which is not embeddable in R*~™ If r =0, then

xen,Kx ... xn,KxnKxKx...xK < n, (K"

p— 1times

(because n,K < n,K) and each neighborhood of x in n,(K*) contains a subset
homeomorphic to

{z.}% ... x{z,o 1} x TxI?x ... xI?,

which is not embeddable in R%**~™ Hence xe€n,. (K.
The inverse inclusion is obvious.

Now we prove a theorem.

THEOREM 2.3. If K, L are compact connected 2-polyhedra, n,K # QD and
F: K* > I* is a homeomorphism, then K ~ L.

Proof. The theorem is not simply a consequence of Lemmas 2.1 and 2.2
because the condition proved in Lemma 2.2 is different from the assumption of
Lemma 2.1.

Let us observe that n,,_,(K¥)\n,, - (K¥) consists of sets of the form

(K\n;K)xn,Kx ... xn,K or (n,K\n,K)x(n,K\n,K)xn,Kx ... xn,K

and sets obtained by permutation of the factors of these sets.
Let us consider the component A4 x {x,}x ... x {x,} of the set

nax - 2(K¥\ng - 1(K"),
where Ae [J(K\n,K) and x;en,K,i=2,..., k. The two cases are possible:
F(Ax{x,} x ... x{x}) = A"x{x3} x ... x{x3},
where A'e[J(L\n,L) and xien,L,i=2,...,k, or
F(Ax{x,}x ... x{x}) =U'x V' x{x3} % ... x {xs},

where U’, V'e[(n,L\n,L) and x;en,L.
The final part of the proof is analogous to the proof of Lemma 3.4 in [3].

LEMMA 2.3. Let K be a compact connected 2-polyhedron. If n,K = Q@ and
F: K* > I* is a homeomorphism, then

F(KxnKx...xnK)=nLx...xnLxLxnLx...xnL.
Proof. If n,K =@, then
n K = {n,Kx..xnK:i;=0,1 i+ ...+i =i}
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by Lemma 2.2. Hence the assumptions of Lemma 2.1 hold and we obtain the
assertion.

THEOREM 2.4. If K is a compact connected 2-polyhedron and there exists
a point xen, K such that its regular neighborhood is not homeomorphic to the set
cone{l,...,m}x1I, and K*~ L*, then K ~ L.

Proof. We can assume that K doés not have local cut points and n,K = @.
Hence, if F: K*¥ - I*¥ is a homeomorphism, then

F(KxnKx...xnK)=LxnLx...xn,L
by Lemma 2.3. Let us observe that
F((K\n,K)xn,K x ... xn,K) = (L\n,L)xn,Lx ... xn,L.

The set of points of n;K such that their regular neighborhoods are not
homeomorphic to the set cone{1, ..., m} x I for a natural number m is denoted
by DK. This set is finite. The corresponding subset of n,Lis denoted by DL.

If xe(K\n,K) x (n, K\DK) x ... x (n,K\DK), then its regular neighborhood
in K* is homeomorphic to

I xcone{l, ..., my} xIx ... xcone{l, ..., m} xI.

In 1938 Borsuk proved [1] that the decomposition into a Cartesian product of
1-polyhedra is unique. If there exists a coordinate x; of the point
x = (x4, X5, ..., X;) such that x;e DK, then its regular neighborhood in K is
not a product of 1-polyhedra, so the regular neighborhood of x in K* is not
homeomorphic to the above set. So

F((K\n,K) x (n,K\DK) x ... x (1,K\DK))
= (L\n,L)x (n,L\DL) x ... x (n,L\DL).
Let Ae O(K\n,K), I, JeO(n,K\DK) and X =InJ # @ (X is finite). Then
F(Ax1;<,... x)=A"xI)x ... xI,
FAxJx...xJ)=A"xJyx ... xJi,
where A4’, A”e[(L\n,L) and I;, J;e (l(n,L\DL). Let us consider the sets

AxIx...xDNnAxIx...x))=AxXx...xX
and
FAxXx .. xX)=AnA")xTynTy)x ... xT,nT}).

Since the first set has dimension 2, the second set has also dimension 2. If
A" # A", then A’ A" < n L. This is impossible because

FAxXx...xX)c (L\n,L)xn,Lx ... xn L.
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So A’ = A” and I'; nJ; = X are finite. The polyhedron K is connected. Hence
FBxXx..xX)=BxX,x...xX) foreveryBe[J(K\n,K),
where B'e[J(L\n,L). The set n,K is nowhere dense in K, so

FIKxXx..xX)=LxX,x...xX, and K=L.

The next part of the paper is analogous to Section 4 of [3]. For every
component A of the set K\n,K we define a 2-manifold M(A) in exactly the
same way as in Section 4 of [3].

IfG: KxS8'x...x8" - LxS8'x... xS!"is a homeomorphism (K is a com-
pact 2-polyhedron), then for every 4 € [J(K\n, K) there exists a homeomorphism

G, MA)xS'x ... xS > MA)xS'x ... xS,
where A’'e[J(L\n,L), such that

(g4 xidsix . x51)0G, = Glaxsix..x510(g4 Xidsi x . xs1),

whereg,: M(4) - A and g,: M(A')— A’ are defined exactly in the same way as
in Section 4 of [3].
The homeomorphism G, is given by the formula

G[{xa}]. t2, ..., 1)
= ([{P1G(x,s t35 ---» tJ}]> Poim G(x,, t3, ..., 1)), ..., Plim G(x,, t,, ..., t,))),

where P, is the projection on the i-th factor and the rest of the notation remains
unchanged (Section 4 of [3]).
- Now we can prove the following

THEOREM 2.5. If K is a compact connected 2-polyhedron, the set n,K contains
a simple closed curve and K* ~ I¥, then K ~ L.

Proof. We can assume that K has no local cut points, n,K =@ and
for every point xen,K its regular neighborhood in K is homeomorphic to
cone{l, ..., m} xI. From Lemma 2.3 we know that

F(Kxn,Kx...xnK)=LxnLx... xnL.

Since at least one of the components of n,K is homeomorphic to S*!, we can
assume that
F(KxS'x...x8)=LxS8'x... xS

The final part of the proof is analogous to the proof of Proposition 4.2 of [3].
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