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Let ¢ denote the class of all compact metric continua K such that there
exists an upper semicontinuous decomposition G of a compact metric
irreducible continuum M with each element of G homeomorphic to K and
the decomposition space M/G is an arc. Transue [6] has shown that no
simple closed curve is in .¢". It is shown in [4] that if n is a positive integer,
then the n-cell is in ¥, and the question (P 865) of whether the 2-sphere is in
X" is raised. Theorem 1 of this paper states that the n-sphere is not in ¢~
and Theorem 2 states the annulus is not in ¢

In this paper, I will denote the interval [0, 1] and Q will denote the
Hilbert cube. Also, d(x, y) is the distance from x to y and B(x, ¢) is the set of
all points y such that d(x, y) < ¢ for some x in X. If G is a decomposition of
a continuum M such that M/G is an arc, we will assume there is a function f
mapping M into I such that

G=1{f"1(1),tel)].

Elements of G will be called layers. g is a layer of continuity if f~': I —2M
is continuous at f(g).

THEOREM 1. No n-dimensional sphere is in X

Proof. Assume the contrary. Let M denote a compact metric irreduc-
ible continuum such that there is a function f mapping M onto I such that
f~Y(x) for xel is homeomorphic to an n-dimensional sphere S".

CraiM. For every non-empty open sei U in I and for every positive integer
k, there is an open and non-empty set V(U, k) such that clV (U, k) is a subset
of U and, for every x in V(U, k), there is a mapping g f~'(x) — E" such
that the diameter of gg'(y) is less than 1/k for every y in E".

Proof of the Claim. By a theorem of Dyer [3], there is a point ¢ in
U such that f~!(¢) is not a layer of continuity. It can be shown there are a
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point m in f ~'(r) and a positive number ¢ such that for every é > 0 there is
a number z in I such that

z—t]<é and [ '(z)nB(m,¢) = 0.

Since f~'(r) is a sphere, there are a neighborhood Wof f!(t) in M and a
retraction r of W to f~'(r). Without loss of generality, for each w in W,

d(w, r(w)) < min(e/2, 1/2k).

There is a positive number 6 such that
ST 1=6,t+8) =W and [t—06,1+] < U.

Let z be such that |z—1] <é and f~'(z)nB(m, &) = @. There is a
neighborhood V (U, k) of z such that V(U, k) = (r—4, t+4) and, since r is
continuous, for every x in V(U, k) and every point p in f~!(x) there is a
point g from f~'(z) such that d(r(p), r(g)) <é&/2. Clearly, m is not in the
image of r restricted to f ~ ' (x). Since f ~!(t)— {m)} is homeomorphic to E", we
may assume f~!(1) is equal to E". Define g, as r restricted to f~'(x).

Let p, and p, denote two points of f ~'(x) such that r(p,) = r(p,). Since
d(w, r(w)) < 1/2k for every w in W and f~'(x) is contained in W, we have
d(py, r(py)) < 1/2k. Therefore d(p,, p,) < 1/k. Hence diam(gg'(y)) < 1/k for
every y in E". This completes the proof of the Claim.

We now proceed to complete the proof of Theorem 1. Let U, = V (I, 1)
and let U,,, = V(U,, k+1). Obviously,

N Ui # 9.
k=1

Suppose x is in () U,. Let h denote a homeomorphism from f ~!(x) onto S".
k=1

There is a positive integer k such that, for each p, and p, from f~'(x) with

d(p,, p2) < 1/k, the points h(p,) and h(p,) are not antipodal. But x is in U,

= V(U,-,, k). Consider the mapping g h ': $"— E". According to the

Borsuk—Ulam Theorem [2] there are antipodal points s and s* such that

gah™ ' (s) =g h™'(s*). It follows by the Claim that

d(h™"(s), h~1(s*) < l/k.

This involves a contradiction. d(p,, p,) < 1/k, and hence h(p,) and h(p,) are
not antipodal. This completes the proof.

THEOREM 2. The annulus does not belong to 1.

Proof. Let A denote an annulus and M denote a compact metric
irreducible continuum such that there is a mapping f from M onto I such
that, for each x in I, f~'(x) is homeomorphic to 4. Suppose M is in Q.
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DeriniTION. Let I(¢) denote the set of all t from I such that the identity
on f!'(t) is homotopic to a constant mapping in B(f ™' (1), ¢).

DeriniTION. Let N (g) denote the set of all + in I such that there is a
& > 0 such that if |z—t] <8, then f~'(t) = B(f ' (2), ¢).

OBSERVATION 1. For every ¢ > 0, the interior of N(¢) is a dense set.

Proof. Observe every element of continuity is contained in the interior
of N(¢). By Corollary 4, p. 72 of [5], the observation follows.

OBSERVATION 2. () clI(g) is nowhere dense in I.
>0

Proof. Assume the contrary. There is an open set U < cl(¢) for ¢ > 0.
We now construct a sequence Gy, G, G,, ... of open and non-empty sets so
that, for each n,

clG,ey =G, NI (L)
n+1

Let G, = U. Suppose G, is constructed. By Observation 1 we have

1
G"mN(z(nH))#g'

Let

I I
’EG"“N(z(H1))“1(2(%1));é 0.

Combining Theorems 8.1 (p. 94) and 5.1 (p. 106) from [1], it can be seen
there are a neighborhood V of f ! () in Q and a deformation D: VxI —Q
such that D(v, 0) = v for all veV, D(v, )e f~'(¢) for all veV, and D(x, s)
=x for all x in f~'(r) and s in I.

There is a neighborhood V, of f~!(r) in V such that

diam D ({v} xI) < 205 1)

for all v in V. Since ¢ is in I(1/2(n+1)), there is a mapping

. -1y BN -1 1
g: [~ () xI B(f (t)’2(n+l))

such that g(x, 0) = x for all x in f~'(r) and g(f ~'(s) x |1]) is a one-point
set. Since t is in N(1/2(n+ 1)), there is a neighborhood U, in I such that, for
each z in U,,

=1 -1, 1
£ B(f (->,2(n+1)).
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There is a neighborhood G,,, of ¢ in I such that
' Guiy) <V, and clG,,, <=G,NnU,.
In order to complete the construction, it suffices to show that
clG,y, =1 (-—1—)
n+1
Let z be a point of cIG,,,. Define a homotopy H: f~'(z) xI — Q by

D(x, 2s) for 0 <s<1/2,

9 = {g(D(x, D,2s=1) for 1/2<s<1.

H is a continuous homotopy between the identity on f ~!(z) and a constant
mapping. Now it suffices to prove that

1
H(/ ™ @ xD) =BG,

+1)‘-

We have H({x] xI) = D(|x] xI)ug(D(x? 1) xI). By the definition of g,

g(D(x, 1) x1I) CB(f"(t), 2(n1+ 1))

and, by the choice of U,,

St eB(fe, 2(n1+ 1)).

Hence

1
g(D(x, 1) xI) < B(f“(z), n+1)'

Since x is in V,, we have

u 1 S1py L
D(!x) x1) cB(x, 2(n+1))cB(f @), n+1)'

This completes the construction.

Note that (G, # . Let t be a point in (\G,. By the construction, t
belongs to I(1/n) for every positive integer n. Therefore, the identity on
f~1(r) is homotopic to a constant mapping in every neighborhood of f~!(¢),
which is impossible since f ~!(t) is an annulus. This completes the proof of
Observation 2.

Let ¢ denote a positive number such that
Int[1—cl(I(2))] # @.

Without loss of generality, we may assume I(2¢) = @. Now, by Observation
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1, the interior of N(¢) is a dense set; without loss of generality we can also
assume N(¢) = 1.

OBSERVATION 3. Let F be a subset of Q such that diam F < ¢. For every t
in 1, the identity on f ~'(t) " F is homotopic to a constant mapping in f ~'(1).

Proof. Assume the contrary. Suppose there is a set F in Q such that
diamF <¢ and there is a tel such that the identity on f~'(t) " F is not
homotopic to a constant mapping in f~!(¢).

There is a simple closed curve C contained in f~!(t) " B(F, ¢/2) so that
C is not contractible in f~'(r); that is to say, the identity on C is not
homotopic to a constant mapping in f ~ ! (t). Observe diam C < 2¢. There is a
homotopy H: f~!(t) xI — f~'(t) such that H(x, 0) = x and H(x, 1) belongs
to C for every x from f~!(t). But the identity on C is homotopic to a
constant in the convex hull C, of C. The composition of H and this
homotopy give a homotopy between the identity on f~'(r) and a constant
mapping in f~'(f)uC,. This contradicts the fact that I(2c) = @&, which
completes the proof of Observation 3.

DerINITION. Let T'(3) denote the set of all elements ¢ in I such that there
is a continuum C,(6) = f~'(r) so that diamC,(5) <é and C,(d) intersects
both components of the boundary of f~!(t).

OBSERVATION 4. () cl T(d) is nowhere dense.
5>0

Proof. Suppose () cl T(5) contains an open and non-empty set U. We
>0

will now construct inductively a sequence G, G,, G,, ... of open sets so that
G, is a non-empty open subset of U and

‘ clG,,, = G, T(1/n).

Let G, = U. Assume G,, G, ..., G, are constructed. Since G, is an open set
in U, and G, < U cclT(1/2n), there is a ze G, n T(1/2n). There is a con-
tinuum C in f~!(z) such that diam C < 1/2n and C intersects both compo-
nents of the boundary of f~'(x). Again, combining Theorems 8.1 (p. 94) and
5.1 (p. 506) from [1], we infer that there are a neighborhood V of f~1(z) in
the Hilbert cube and a homotopy H: VxI — Q such that

(1) H(x, s) = x, xe f " '(z) and sel,

(2 H(v,0)=v and H(v, 1) is in f~!(z) for veV.
Recalling N(¢) = I, we may assume without loss of generality that

(A)) diam (H ({v} xI)) < min(1/4n, ¢).

Let G,,, be an open neighborhood of z such that clG,,; < G, and, for every
tin clG,,,f () = V and

(A) S '@ <B(f '), ¢).
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Let F denote cl{ve V| there is a set sel such that H(v, s)e C|. Observe
diamF < 1/n. Consider f~'(t)nF. If for each r in clG,,, there is a
component f~ ! (t) n F which intersects both components of the boundary of
f~1(1), then the proof is complete.

Assume for some ¢ in clG,,, no component of f~'(t)nF intersects
both components of the boundary of f~'(t). Then f~'(r)—F contains a
simple closed curve S, which is not contractible in f~!(z). Since £~ (f) is an
annulus, there is a homotopy H,: f (1) xI — f ~'(¢) such that H, (x, 0) = x
for all x in f~'(t) and H,(x, 1) belongs to S.

Let Hy: (f '(z)—C)xI—f""'(z) be a homotopy such that H,(x, 0)
= x for all xef~'(z)—C, and H,(x, 1) is constant for all x in f~'(z)—C.

Let H;: f~'(t) xI — Q be a homotopy defined by

H, (x, 3s) for 0 <s<1/3,
H,(x,s) =< H(H,(x, 1), 3s—1) for 1/3 <s<2/3,
H,[H(H,(x,1),1),3s—2] for 2/3<s<1

One can show that H, is a homotopy in B(f ~'(1), ¢). This is a contradiction
because (A;) and (A,;) imply that I(¢) = . So the construction of
G¢, Gy, G,, ... 1s complete.

Let t be in (\G,. The set f ~!(r) is an annulus so that for each n there is
a continuum with diameter less than 1/n meeting both components of the
boundary of f~!(t). Hence the boundaries intersect. This involves a contra-
diction and the proof of Observation 4 is complete.

We now proceed to complete the proof of Theorem 2. Again without
loss of generality, we may assume there is a positive number 6 < ¢ such that
T(0) = Q. Let U be an open and non-empty set with diameter less than ¢.
For every t in I there is only one component C, of f ™! (t)— U such that the
identity on C, is not homotopic to a constant mapping in f~!(r).

Let

M, =C,.
tel

fIM,; maps M, onto I and it is a monotone mapping. To prove M,
is a continuum, it suffices to prove M, is compact. Suppose x is in cl M,.
There is a point z such that x is in f ~!(z). Suppose x does not belong to C,.
Let C be a component of f ~!(z)— U which contains x. Since C # C., there is
a homotopy H: C xI — f~!(z) so that H(c, 0) = c and H(c, 1) is a constant
for all ce C. There are a neighborhood V of C and a homotopy H*: VxI
— Q so that H*(v,0)=v and H*(v, 1) is constant for v in ¥V and H*,
restricted to C x [ is H. Again, without loss of generality, the image of H* is
a subset of B(f!(z2), ¢).

Since x belongs to clM,; and components of M—U form an upper
semicontinuous decomposition of M — U, there is a point t* in I such that
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C. is a subset of V. Since I = N(e¢), without loss of generality
f~"z) = B(f ' (t*), ¢). Since only one component of f '(t*)—clU is not
contractible in f~!(t*) and this component is contained in C,., there is a
simple closed curve J in C, which is not contractible in f~!(t¥).

Let H, be a homotopic mapping of f~!'(t*)xI— f~!(t*) so that
H,(y,0=y and H,(y, 1) is in J for all y in f~!(t*).

Let H,: f~'(t*) xI — Q be defined by

H,(y, 2s) for 0<s<1/2,

s
Ha(y, x) = {H*( H,(y,1),2s—1) for 1/2<s<1.

Observe that H,(y, 0)=y and H,(y, 1) is a constant for every y in
f~1(t*). The image of H, is a subset of the union of the image of H; and the
image of H*, which is a subset of f~!(r*)UB(f ™ '(2), ¢). Since

S7HR) = B(fTH(*), &) = B(f (1), %),

the image of H, is a subset of B(f ™' (t*), 2¢), Wthh is impossible, due to the
assumption after Observation 2 that I(2e) =

Hence U C, is compact and is a proper subcontmuum of M intersecting
=1

f~1(0) and f ~1(1). This involves a contradiction and the proof of Theorem 2
is complete.

QuesTIONs. Is there a closed manifold in #? Does ¢ contain any closed
manifold or the Cartesian product of a closed manifold with an arc? (P 1325)
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