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DECOMPOSABILITY OF POINT MEASURES
IN GENERALIZED CONVOLUTION ALGEBRAS

BY

J. KUCHARCZAK (WROCLAW)

Throughout this paper, f denotes the set of all Borel probability
measures on the positive half-line R, endowed with the topology of weak
convergence. The measure concentrated at a single point ¢ will be denoted by
.. Further, by T. (c > 0) we denote the map defined by the formula

(TLW(E) = p(c™ ' E)

for ue P and Borel subsets E of R, .

Generalized convolutions were introduced in [2]. Let us recall some
definitions. A continuous in each variable separately commutative and
associative P-valued binary operation o on P is called a generalized convolu-
tion if it is distributive with respect to convex combinations and maps T,
(c > 0) with &, as the unit element. Moreover, it is assumed that for a certain
sequence ¢, of norming constants and a measure y different from J, the
relation

) T, 5"y

holds. Here 6%" is the n-th power of , under o. Recently, Urbanik proved in
[3] that each generalized convolution is continuous in both variables.

A generalized convolution is said to be quasi-regular if the norming
sequence ¢, in (1) tends to 0. This concept was introduced in [1].

A measure A from P is said to be decomposable under a generalized
convolution o if A = yov for some y and v from P different from 4. Let O
<a < 0. For any pair u, ve B we denote by p o, v the probability distribu-
tion of (X*+ Y% if 0 <a < co and max (X, Y) if @ = co, where the random
variables X and Y are independent and have the probability distributions u
and v, respectively. It is clear that o, are generalized convolutions and

5, =6,0,8, if @+b=1(0<a<o0),
5‘=500w51 ifaSl.
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The generalized convolution o, is called the a-convolution. The last equations
show that the measure §, is decomposable under a-convolutions. K. Urbanik
asked (see [1], P 827) whether the converse implication is true. We shall
answer this question in the affirmative. Namely, we prove the following

THEOREM. If the measure 6, is decomposable under a generalized convolu-
tion o, then o is an a-convolution.

Before proving the Theorem we prove some lemmas.
By N(u) we denote the support of the measure u. We start with the
following useful remark:

LEMMA 1. If 6, = puov, then
0, =0,00, =06,0v for all (a, b)éN(p)xN(v).

Proof. The measure uov has an integral representation

pov = [ [ 6,00, u(da)v(db),
00

where the integral is taken in the weak sense ([3], formula (2.13)). By
Proposition 2.3 in [3],

N(@,006,) = N(uov), N(é,0v)=N(uov)
for all (a, b)e N(u) x N(v). If 6, = pov, then
N@,08,) = {1} and N(b,0v)c< {1}
for all (a, b)e N(u) x N(v). In other words,
6, =0,00, =6,0v
for all pairs (a, b) in question, which completes the proof.

LeEmMA 2. If 6, = d,0u for a certain measure u, then a < 1.
Proof. By the induction we get easily the formula

2 8y =ba0p, (n=1,2,..),

where
n-1
l‘lll= O Toj# (n=l’ 2"")'
j=0

Suppose that a > 1. Then §,-»— 6o. On the other hand, by (2),
6¢—n=5107;—n[l,, (n=l,2,...),

which by Corollary 2.4 in [3] yields the contradiction é, — do. Thus a < 1,
which completes the proof.

LEmMA 3. For a quasi-regular generalized convolution the equation J,
=0, 0u yields pu=4,.
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Proof. Suppose the contrary u # 6,. Then, by Lemma 1, 8, =, 04,
for a positive number a from N(u). By a simple induction we have the
formula

61 = 61 052" (n = l, 2, ...).
Taking the norming sequence ¢, in (1) we have also
o,=0,cT,T 0" (n=12,..).

Since J, — 8o, we get the equation 6, = T,y when n.— co. Consequently, y
= d9, which gives a contradiction. The lemma is thus proved.
From Lemmas 2 and 3 we obtain the following

CoROLLARY. For a quasi-regular generalized convolution the equation 6,
= 8,00, for some positive numbers a and b yields a <1 and b < 1.

LemMmA 4. Suppose that o(n,m) (n,m =0, 1, 2, ..)) is an array of prob-
ability measures from ‘R with the properties

3) e(n,my=g(m,n), o(n, m=o(n+1,mog(n, m+1)
(m,m=0,1,2,..). Then
@) e(0, 1) =¢(1, k—1)*ov, (k=3,4,..),

where vy = ¢(0, 3) qnd
n=e(0.00 O e@.j=1 (k>3
Proof. We prove our statement by induction. Using (3) we have
e(0, 1) = ¢(1, 1)0e(0, 2) = (e(2, 1)oe(1, 2)o(e(l, 2)0g(0, 3))
= (1, 2)**0¢(0, 3),

which shows that (4) is true for k = 3. Suppose now that (4) is true for some
k = 3. Using (3) we have

e(l, k—1)=90(2, k—1)oe(1, k), (0, k) =¢(1, k)0g(0, k+1).
Thus

e(1, k—1)*0g(0, k) = ¢(1, k*** P 0g(0, k+1)0(2, k—1)*,

which together with (4) yields 8, = o(1, k)°**Vv,,,. This completes the
proof.

LeMMA 5. Suppose that pe B, k > 1, 6, = u°*04,, and a < 1. Then there
exists a measure A€ P such that 5, = i,

Proof. By a simple induction we get the formula

8, =u*k0d, (n=1,2,..),
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where
n—1
U= O Tju (=1,2,..).
j=0
By Corollary 2.3 in [3] the sequence p, is conditionally compact in B. Let A
be its limit point. Since d,» — 8,, we have then 6, = A°*, which completes the
proof.

Proof of the Theorem. If the operation o is not quasi-regular, then,
by Theorem 4.1 in [3], o = o,. Consider the case of quasi-regular general-
ized convolutions. Let 6, = pov with u and v different from é,. Then, by
Lemma 1,

(5) 61 =6a05b

for some positive numbers a and b. Moreover, by the Corollary to Lemma 3,
a<1 and b <1. From (5), by the distributivity of the operation o with
respect to all maps 7. (c > 0), we get the equations

(6) 6a"b"‘ = 5¢n+lbm O(Sanbm+l (n, m= 0, 1, 2, )
Put
Q(ﬂ, "I) = 50"!7"' Oéambn (n, m= O, 1, 2, )

It is easy to show, by virtue of (6), that the measures g(n, m) fulfil the
conditions of Lemma 4 and ¢(0, 1) = §,. Consequently,

6, =0(1, k—1)%ov, (k=3,4,..),

where v = ¢(0, 3) and

k-1
v =0(0,k)0 O o(2,j—1)7 (k>3).
j=3
Moreover, by Lemma 2.3 in [3], the inequalities ¢ >0 and b > 0 yield
e(n,m)#d6y (n,m=0,1,2,..). Consequently, v, # 6, (k=3,4,..). Ap-
plying Lemma 1, we conclude that

3y =e(l, k—1)*04,,

for a certain positive number g, belonging to N(v,). Furthermore, by
Lemmas 2 and 3, g, <1 (k =3, 4, ...), which by Lemma 5 gives the existence
of the measure A, satisfying the equation 8, = A* (k =3, 4,...). Thus, in
other words, the measure 4, is infinitely divisible in the sense of the
generalized convolution o. Now, our assertion is a direct consequence of the
Theorem in [1], p. 142, which completes the proof.
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